IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v196y2017icp208-217.html
   My bibliography  Save this item

Urban energy–water nexus based on modified input–output analysis

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Li, Jia Shuo & Zhou, H.W. & Meng, Jing & Yang, Q. & Chen, B. & Zhang, Y.Y., 2018. "Carbon emissions and their drivers for a typical urban economy from multiple perspectives: A case analysis for Beijing city," Applied Energy, Elsevier, vol. 226(C), pages 1076-1086.
  2. Yinwen Huang & Dechun Huang, 2023. "Decoupling Economic Growth from Embodied Water–Energy–Food Consumption Based on a Modified MRIO Model: A Case Study of the Yangtze River Delta Region in China," Sustainability, MDPI, vol. 15(14), pages 1-21, July.
  3. Zhao, Rongqin & Liu, Ying & Tian, Mengmeng & Ding, Minglei & Cao, Lianhai & Zhang, Zhanping & Chuai, Xiaowei & Xiao, Liangang & Yao, Lunguang, 2018. "Impacts of water and land resources exploitation on agricultural carbon emissions: The water-land-energy-carbon nexus," Land Use Policy, Elsevier, vol. 72(C), pages 480-492.
  4. Nawab, Asim & Liu, Gengyuan & Meng, Fanxin & Hao, Yan & Zhang, Yan, 2019. "Urban energy-water nexus: Spatial and inter-sectoral analysis in a multi-scale economy," Ecological Modelling, Elsevier, vol. 403(C), pages 44-56.
  5. Xia, Chuyu & Chen, Bin, 2020. "Urban land-carbon nexus based on ecological network analysis," Applied Energy, Elsevier, vol. 276(C).
  6. Tan, Ling Min & Arbabi, Hadi & Brockway, Paul E. & Densley Tingley, Danielle & Mayfield, Martin, 2019. "An ecological-thermodynamic approach to urban metabolism: Measuring resource utilization with open system network effectiveness analysis," Applied Energy, Elsevier, vol. 254(C).
  7. Feng, Cuiyang & Qu, Shen & Jin, Yi & Tang, Xu & Liang, Sai & Chiu, Anthony S.F. & Xu, Ming, 2019. "Uncovering urban food-energy-water nexus based on physical input-output analysis: The case of the Detroit Metropolitan Area," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
  8. Ding, Tao & Liang, Liang & Zhou, Kaile & Yang, Min & Wei, Yuqi, 2020. "Water-energy nexus: The origin, development and prospect," Ecological Modelling, Elsevier, vol. 419(C).
  9. Zhao, Ke-Xin & Xu, Fei-Ran & Zhou, Yan & Ma, Tao, 2024. "The heterogeneous effects of non-hydro renewable energy and water resources on industrial development of the Yellow river and Yangtze river basins," Energy, Elsevier, vol. 301(C).
  10. Lv, Kai & Xie, Yudong & Wang, Yong & Sun, Guang, 2021. "Performance investigations of a control valve with the function of energy harvesting," Energy, Elsevier, vol. 214(C).
  11. Gu, Yifan & Wang, Hongtao & Xu, Jin & Wang, Ying & Wang, Xin & Robinson, Zoe P. & Li, Fengting & Wu, Jiang & Tan, Jianguo & Zhi, Xing, 2019. "Quantification of interlinked environmental footprints on a sustainable university campus: A nexus analysis perspective," Applied Energy, Elsevier, vol. 246(C), pages 65-76.
  12. Jinyoung Lee & Hana Kim, 2021. "Regional dimensions of the South Korean water-energy nexus," Energy & Environment, , vol. 32(4), pages 722-736, June.
  13. Kai Lv & Yudong Xie & Xinbiao Zhang & Yong Wang, 2020. "Development of Savonius Rotors Integrated into Control Valves for Energy Harvesting," Sustainability, MDPI, vol. 12(20), pages 1-19, October.
  14. Wang, Saige & Chen, Bin, 2018. "Three-Tier carbon accounting model for cities," Applied Energy, Elsevier, vol. 229(C), pages 163-175.
  15. Hourieh Masaeli & Alireza Gohari & Marzieh Hasanzadeh Saray & Ali Torabi Haghighi, 2023. "Developing a new water–energy–food‐greenhouse gases nexus tool for sustainable agricultural landscape management," Sustainable Development, John Wiley & Sons, Ltd., vol. 31(2), pages 877-892, April.
  16. Ju, Yiyi, 2019. "Revealing the bilateral dependencies and policy implication of food production of Japan and China: From the perspective of Food-Energy-Water nexus," Ecological Modelling, Elsevier, vol. 391(C), pages 29-39.
  17. Owen, Anne & Scott, Kate & Barrett, John, 2018. "Identifying critical supply chains and final products: An input-output approach to exploring the energy-water-food nexus," Applied Energy, Elsevier, vol. 210(C), pages 632-642.
  18. De Stercke, Simon & Mijic, Ana & Buytaert, Wouter & Chaturvedi, Vaibhav, 2018. "Modelling the dynamic interactions between London’s water and energy systems from an end-use perspective," Applied Energy, Elsevier, vol. 230(C), pages 615-626.
  19. Chen, Pi-Cheng & Alvarado, Valeria & Hsu, Shu-Chien, 2018. "Water energy nexus in city and hinterlands: Multi-regional physical input-output analysis for Hong Kong and South China," Applied Energy, Elsevier, vol. 225(C), pages 986-997.
  20. Xiao, Zhengyan & Yao, Meiqin & Tang, Xiaotong & Sun, Luxi, 2019. "Identifying critical supply chains: An input-output analysis for Food-Energy-Water Nexus in China," Ecological Modelling, Elsevier, vol. 392(C), pages 31-37.
  21. Fan, Jing-Li & Kong, Ling-Si & Wang, Hang & Zhang, Xian, 2019. "A water-energy nexus review from the perspective of urban metabolism," Ecological Modelling, Elsevier, vol. 392(C), pages 128-136.
  22. Guan, Shihui & Han, Mengyao & Wu, Xiaofang & Guan, ChengHe & Zhang, Bo, 2019. "Exploring energy-water-land nexus in national supply chains: China 2012," Energy, Elsevier, vol. 185(C), pages 1225-1234.
  23. Ruixin Gou & Guiping He & Bo Yu & Yanli Xiao & Zhiwei Luo & Yulei Xie, 2022. "An Integrated Energy System Operation Optimization Model for Water Consumption Control Analysis in Park Scale from the Perspective of Energy–Water Nexus," Energies, MDPI, vol. 15(12), pages 1-12, June.
  24. Yang, Xuechun & Wang, Yutao & Sun, Mingxing & Wang, Renqing & Zheng, Peiming, 2018. "Exploring the environmental pressures in urban sectors: An energy-water-carbon nexus perspective," Applied Energy, Elsevier, vol. 228(C), pages 2298-2307.
  25. Ju, Yiyi & Fujikawa, Kiyoshi, 2019. "Modeling the cost transmission mechanism of the emission trading scheme in China," Applied Energy, Elsevier, vol. 236(C), pages 172-182.
  26. Liu, Keling & Chen, Bin & Wang, Saige & Wang, Hao, 2023. "An urban waterlogging footprint accounting based on emergy: A case study of Beijing," Applied Energy, Elsevier, vol. 348(C).
  27. Zhang, Yiyi & Fang, Jiake & Wang, Saige & Yao, Huilu, 2020. "Energy-water nexus in electricity trade network: A case study of interprovincial electricity trade in China," Applied Energy, Elsevier, vol. 257(C).
  28. Shen, Jijie & Yi, Peng & Zhang, Xumin & Yang, Yuantao & Fang, Jinzhu & Chi, Yuanying, 2023. "Can water conservation and energy conservation be promoted simultaneously in China?," Energy, Elsevier, vol. 278(PA).
  29. Molinos-Senante, María & Sala-Garrido, Ramón, 2017. "Energy intensity of treating drinking water: Understanding the influence of factors," Applied Energy, Elsevier, vol. 202(C), pages 275-281.
  30. Wang, Saige & Fath, Brian & Chen, Bin, 2019. "Energy–water nexus under energy mix scenarios using input–output and ecological network analyses," Applied Energy, Elsevier, vol. 233, pages 827-839.
  31. Gao, Tong & Fang, Delin & Chen, Bin, 2020. "Multi-regional input-output and linkage analysis for water-PM2.5 nexus," Applied Energy, Elsevier, vol. 268(C).
  32. Hao Li & Yuhuan Zhao & Jiang Lin, 2020. "A review of the energy–carbon–water nexus: Concepts, research focuses, mechanisms, and methodologies," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 9(1), January.
  33. Elena Helerea & Marius D. Calin & Cristian Musuroi, 2023. "Water Energy Nexus and Energy Transition—A Review," Energies, MDPI, vol. 16(4), pages 1-31, February.
  34. Du, Jiyun & Shen, Zhicheng & Yang, Hongxing, 2018. "Effects of different block designs on the performance of inline cross-flow turbines in urban water mains," Applied Energy, Elsevier, vol. 228(C), pages 97-107.
  35. Wang, Saige & Liu, Yating & Chen, Bin, 2018. "Multiregional input–output and ecological network analyses for regional energy–water nexus within China," Applied Energy, Elsevier, vol. 227(C), pages 353-364.
  36. Ahmad, Shakeel & Jia, Haifeng & Chen, Zhengxia & Li, Qian & Xu, Changqing, 2020. "Water-energy nexus and energy efficiency: A systematic analysis of urban water systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
  37. Wang, Xipan & Song, Junnian & Xing, Jiahao & Duan, Haiyan & Wang, Xian'en, 2022. "System nexus consolidates coupling of regional water and energy efficiencies," Energy, Elsevier, vol. 256(C).
  38. Zhipeng Tang & Ziao Mei & Tao Song & Chenxinyi Yang, 2022. "Gearing Urban Metabolism toward the Carbon Neutrality Target: A Case Study of Hebei Province, China," Energies, MDPI, vol. 15(14), pages 1-16, July.
  39. Duan, Cuncun & Chen, Bin, 2020. "Driving factors of water-energy nexus in China," Applied Energy, Elsevier, vol. 257(C).
  40. Li, Xian & Yang, Lili & Zheng, Heran & Shan, Yuli & Zhang, Zongyong & Song, Malin & Cai, Bofeng & Guan, Dabo, 2019. "City-level water-energy nexus in Beijing-Tianjin-Hebei region," Applied Energy, Elsevier, vol. 235(C), pages 827-834.
  41. Edrisi, Sheikh Adil & Sahiba, Sheikh Arshiya & Chen, Bin & Abhilash, P.C., 2022. "Emergy-based sustainability analysis of bioenergy production from marginal and degraded lands of India," Ecological Modelling, Elsevier, vol. 466(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.