IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v112y2013icp35-51.html
   My bibliography  Save this item

Integrated analysis of high-penetration PV and PHEV with energy storage and demand response

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Erdinc, Ozan, 2014. "Economic impacts of small-scale own generating and storage units, and electric vehicles under different demand response strategies for smart households," Applied Energy, Elsevier, vol. 126(C), pages 142-150.
  2. Rosario Miceli & Fabio Viola, 2017. "Designing a Sustainable University Recharge Area for Electric Vehicles: Technical and Economic Analysis," Energies, MDPI, vol. 10(10), pages 1-24, October.
  3. Vaghefi, A. & Farzan, Farbod & Jafari, Mohsen A., 2015. "Modeling industrial loads in non-residential buildings," Applied Energy, Elsevier, vol. 158(C), pages 378-389.
  4. Harbrecht, Alexander & McKenna, Russell & Fischer, David & Fichtner, Wolf, 2018. "Behavior-oriented modeling of electric vehicle load profiles: A stochastic simulation model considering different household characteristics, charging decisions and locations," Working Paper Series in Production and Energy 29, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).
  5. Bhatti, Abdul Rauf & Salam, Zainal, 2018. "A rule-based energy management scheme for uninterrupted electric vehicles charging at constant price using photovoltaic-grid system," Renewable Energy, Elsevier, vol. 125(C), pages 384-400.
  6. Kaschub, Thomas & Jochem, Patrick & Fichtner, Wolf, 2016. "Solar energy storage in German households: profitability, load changes and flexibility," Energy Policy, Elsevier, vol. 98(C), pages 520-532.
  7. Obara, Shin’ya & Konno, Daisuke & Utsugi, Yuta & Morel, Jorge, 2014. "Analysis of output power and capacity reduction in electrical storage facilities by peak shift control of PV system with bifacial modules," Applied Energy, Elsevier, vol. 128(C), pages 35-48.
  8. van der Stelt, Sander & AlSkaif, Tarek & van Sark, Wilfried, 2018. "Techno-economic analysis of household and community energy storage for residential prosumers with smart appliances," Applied Energy, Elsevier, vol. 209(C), pages 266-276.
  9. Erdogan, Nuh & Kucuksari, Sadik & Murphy, Jimmy, 2022. "A multi-objective optimization model for EVSE deployment at workplaces with smart charging strategies and scheduling policies," Energy, Elsevier, vol. 254(PA).
  10. Syed Zulqadar Hassan & Tariq Kamal & Muhammad Hussnain Riaz & Syed Aamir Hussain Shah & Hina Gohar Ali & Muhammad Tanveer Riaz & Muhammad Sarmad & Amir Zahoor & Muhammad Abbas Khan & Julio Pascual Miq, 2019. "Intelligent Control of Wind-Assisted PHEVs Smart Charging Station," Energies, MDPI, vol. 12(5), pages 1-31, March.
  11. Katz, Jonas & Andersen, Frits Møller & Morthorst, Poul Erik, 2016. "Load-shift incentives for household demand response: Evaluation of hourly dynamic pricing and rebate schemes in a wind-based electricity system," Energy, Elsevier, vol. 115(P3), pages 1602-1616.
  12. Francesco Simmini & Marco Agostini & Massimiliano Coppo & Tommaso Caldognetto & Andrea Cervi & Fabio Lain & Ruggero Carli & Roberto Turri & Paolo Tenti, 2020. "Leveraging Demand Flexibility by Exploiting Prosumer Response to Price Signals in Microgrids," Energies, MDPI, vol. 13(12), pages 1-19, June.
  13. Munkhammar, Joakim & Widén, Joakim & Rydén, Jesper, 2015. "On a probability distribution model combining household power consumption, electric vehicle home-charging and photovoltaic power production," Applied Energy, Elsevier, vol. 142(C), pages 135-143.
  14. Robinson, Scott A. & Rai, Varun, 2015. "Determinants of spatio-temporal patterns of energy technology adoption: An agent-based modeling approach," Applied Energy, Elsevier, vol. 151(C), pages 273-284.
  15. Yazan, Devrim Murat & Fraccascia, Luca & Mes, Martijn & Zijm, Henk, 2018. "Cooperation in manure-based biogas production networks: An agent-based modeling approach," Applied Energy, Elsevier, vol. 212(C), pages 820-833.
  16. Mariangela Scorrano & Romeo Danielis & Stefano Pastore & Vanni Lughi & Alessandro Massi Pavan, 2020. "Modeling the Total Cost of Ownership of an Electric Car Using a Residential Photovoltaic Generator and a Battery Storage Unit—An Italian Case Study," Energies, MDPI, vol. 13(10), pages 1-21, May.
  17. Chatzisideris, Marios D. & Laurent, Alexis & Christoforidis, Georgios C. & Krebs, Frederik C., 2017. "Cost-competitiveness of organic photovoltaics for electricity self-consumption at residential buildings: A comparative study of Denmark and Greece under real market conditions," Applied Energy, Elsevier, vol. 208(C), pages 471-479.
  18. Tang, Daogui & Fang, Yi-Ping & Zio, Enrico, 2023. "Vulnerability analysis of demand-response with renewable energy integration in smart grids to cyber attacks and online detection methods," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
  19. Zou, Wenke & Sun, Yongjun & Gao, Dian-ce & Zhang, Xu & Liu, Junyao, 2023. "A review on integration of surging plug-in electric vehicles charging in energy-flexible buildings: Impacts analysis, collaborative management technologies, and future perspective," Applied Energy, Elsevier, vol. 331(C).
  20. Sardi, Junainah & Mithulananthan, N. & Hung, Duong Quoc, 2017. "Strategic allocation of community energy storage in a residential system with rooftop PV units," Applied Energy, Elsevier, vol. 206(C), pages 159-171.
  21. Ramshani, Mohammad & Li, Xueping & Khojandi, Anahita & Omitaomu, Olufemi, 2020. "An agent-based approach to study the diffusion rate and the effect of policies on joint placement of photovoltaic panels and green roof under climate change uncertainty," Applied Energy, Elsevier, vol. 261(C).
  22. Cao, Sunliang & Sirén, Kai, 2014. "Impact of simulation time-resolution on the matching of PV production and household electric demand," Applied Energy, Elsevier, vol. 128(C), pages 192-208.
  23. Khan, Agha Salman M. & Verzijlbergh, Remco A. & Sakinci, Ozgur Can & De Vries, Laurens J., 2018. "How do demand response and electrical energy storage affect (the need for) a capacity market?," Applied Energy, Elsevier, vol. 214(C), pages 39-62.
  24. Thomas, Dimitrios & Deblecker, Olivier & Ioakimidis, Christos S., 2018. "Optimal operation of an energy management system for a grid-connected smart building considering photovoltaics’ uncertainty and stochastic electric vehicles’ driving schedule," Applied Energy, Elsevier, vol. 210(C), pages 1188-1206.
  25. Cole, Wesley & Greer, Daniel & Ho, Jonathan & Margolis, Robert, 2020. "Considerations for maintaining resource adequacy of electricity systems with high penetrations of PV and storage," Applied Energy, Elsevier, vol. 279(C).
  26. Santos, João M. & Moura, Pedro S. & Almeida, Aníbal T. de, 2014. "Technical and economic impact of residential electricity storage at local and grid level for Portugal," Applied Energy, Elsevier, vol. 128(C), pages 254-264.
  27. Juha Koskela & Pertti Järventausta, 2023. "Demand Response with Electrical Heating in Detached Houses in Finland and Comparison with BESS for Increasing PV Self-Consumption," Energies, MDPI, vol. 16(1), pages 1-25, January.
  28. Dufo-López, Rodolfo, 2015. "Optimisation of size and control of grid-connected storage under real time electricity pricing conditions," Applied Energy, Elsevier, vol. 140(C), pages 395-408.
  29. Nezamoddini, Nasim & Wang, Yong, 2016. "Risk management and participation planning of electric vehicles in smart grids for demand response," Energy, Elsevier, vol. 116(P1), pages 836-850.
  30. Montuori, Lina & Alcázar-Ortega, Manuel & Álvarez-Bel, Carlos & Domijan, Alex, 2014. "Integration of renewable energy in microgrids coordinated with demand response resources: Economic evaluation of a biomass gasification plant by Homer Simulator," Applied Energy, Elsevier, vol. 132(C), pages 15-22.
  31. Goli, P. & Shireen, W., 2014. "PV powered smart charging station for PHEVs," Renewable Energy, Elsevier, vol. 66(C), pages 280-287.
  32. Neves, Diana & Pina, André & Silva, Carlos A., 2015. "Demand response modeling: A comparison between tools," Applied Energy, Elsevier, vol. 146(C), pages 288-297.
  33. Erdogan, Nuh & Pamucar, Dragan & Kucuksari, Sadik & Deveci, Muhammet, 2021. "An integrated multi-objective optimization and multi-criteria decision-making model for optimal planning of workplace charging stations," Applied Energy, Elsevier, vol. 304(C).
  34. Cao, Sunliang, 2019. "The impact of electric vehicles and mobile boundary expansions on the realization of zero-emission office buildings," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
  35. Stötzer, Martin & Hauer, Ines & Richter, Marc & Styczynski, Zbigniew A., 2015. "Potential of demand side integration to maximize use of renewable energy sources in Germany," Applied Energy, Elsevier, vol. 146(C), pages 344-352.
  36. Erdinc, Ozan & Paterakis, Nikolaos G. & Pappi, Iliana N. & Bakirtzis, Anastasios G. & Catalão, João P.S., 2015. "A new perspective for sizing of distributed generation and energy storage for smart households under demand response," Applied Energy, Elsevier, vol. 143(C), pages 26-37.
  37. Wu, Zhou & Tazvinga, Henerica & Xia, Xiaohua, 2015. "Demand side management of photovoltaic-battery hybrid system," Applied Energy, Elsevier, vol. 148(C), pages 294-304.
  38. Gudmunds, D. & Nyholm, E. & Taljegard, M. & Odenberger, M., 2020. "Self-consumption and self-sufficiency for household solar producers when introducing an electric vehicle," Renewable Energy, Elsevier, vol. 148(C), pages 1200-1215.
  39. Gils, Hans Christian, 2016. "Economic potential for future demand response in Germany – Modeling approach and case study," Applied Energy, Elsevier, vol. 162(C), pages 401-415.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.