IDEAS home Printed from https://ideas.repec.org/r/eee/apmaco/v334y2018icp388-400.html
   My bibliography  Save this item

Improved centrality indicators to characterize the nodal spreading capability in complex networks

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Bodaghi, Amirhosein & Goliaei, Sama & Salehi, Mostafa, 2019. "The number of followings as an influential factor in rumor spreading," Applied Mathematics and Computation, Elsevier, vol. 357(C), pages 167-184.
  2. Lili Xu & Fanrui Su & Jie Zhang & Na Zhang, 2022. "High-Speed Rail Network Structural Characteristics and Evolution in China," Mathematics, MDPI, vol. 10(18), pages 1-17, September.
  3. Giacopelli, G. & Migliore, M. & Tegolo, D., 2020. "Graph-theoretical derivation of brain structural connectivity," Applied Mathematics and Computation, Elsevier, vol. 377(C).
  4. Keng, Ying Ying & Kwa, Kiam Heong & Ratnavelu, Kurunathan, 2021. "Centrality analysis in a drug network and its application to drug repositioning," Applied Mathematics and Computation, Elsevier, vol. 395(C).
  5. Zareie, Ahmad & Sheikhahmadi, Amir, 2019. "EHC: Extended H-index Centrality measure for identification of users’ spreading influence in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 141-155.
  6. Huang, Jiechen & Wang, Juan & Xia, Chengyi, 2020. "Role of vaccine efficacy in the vaccination behavior under myopic update rule on complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
  7. Yang, Pingle & Meng, Fanyuan & Zhao, Laijun & Zhou, Lixin, 2023. "AOGC: An improved gravity centrality based on an adaptive truncation radius and omni-channel paths for identifying key nodes in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
  8. Li, Xiaopeng & Sun, Shiwen & Xia, Chengyi, 2019. "Reputation-based adaptive adjustment of link weight among individuals promotes the cooperation in spatial social dilemmas," Applied Mathematics and Computation, Elsevier, vol. 361(C), pages 810-820.
  9. Liu, Xiaoxiao & Sun, Shiwen & Wang, Jiawei & Xia, Chengyi, 2019. "Onion structure optimizes attack robustness of interdependent networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
  10. Zhu, Linhe & Liu, Mengxue & Li, Yimin, 2019. "The dynamics analysis of a rumor propagation model in online social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 118-137.
  11. Wang, Yufang & Wang, Haiyan & Zhang, Shuhua, 2020. "Prediction of daily PM2.5 concentration in China using data-driven ordinary differential equations," Applied Mathematics and Computation, Elsevier, vol. 375(C).
  12. P.B., Divya & Lekha, Divya Sindhu & Johnson, T.P. & Balakrishnan, Kannan, 2022. "Vulnerability of link-weighted complex networks in central attacks and fallback strategy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 590(C).
  13. Lekha, Divya Sindhu & Balakrishnan, Kannan, 2020. "Central attacks in complex networks: A revisit with new fallback strategy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
  14. Federico Karagulian & Gaetano Valenti & Carlo Liberto & Matteo Corazza, 2022. "A Methodology to Estimate Functional Vulnerability Using Floating Car Data," Sustainability, MDPI, vol. 15(1), pages 1-15, December.
  15. Jiang, Lincheng & Zhao, Xiang & Ge, Bin & Xiao, Weidong & Ruan, Yirun, 2019. "An efficient algorithm for mining a set of influential spreaders in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 58-65.
  16. Wang, Wei & Cai, Kaiquan & Du, Wenbo & Wu, Xin & Tong, Lu (Carol) & Zhu, Xi & Cao, Xianbin, 2020. "Analysis of the Chinese railway system as a complex network," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
  17. Agryzkov, Taras & Tortosa, Leandro & Vicent, Jose F., 2019. "A variant of the current flow betweenness centrality and its application in urban networks," Applied Mathematics and Computation, Elsevier, vol. 347(C), pages 600-615.
  18. Liu, Wanping & Wu, Xiao & Yang, Wu & Zhu, Xiaofei & Zhong, Shouming, 2019. "Modeling cyber rumor spreading over mobile social networks: A compartment approach," Applied Mathematics and Computation, Elsevier, vol. 343(C), pages 214-229.
  19. Guillermo de Anda-Jáuregui & Jesús Espinal-Enríquez & Santiago Sandoval-Motta & Enrique Hernández-Lemus, 2019. "A Boolean Network Approach to Estrogen Transcriptional Regulation," Complexity, Hindawi, vol. 2019, pages 1-10, May.
  20. da Cunha, Éverton Fernandes & da Fontoura Costa, Luciano, 2022. "On hypercomplex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 591(C).
  21. Zhang, Jun-li & Fu, Yan-jun & Cheng, Lan & Yang, Yun-yun, 2021. "Identifying multiple influential spreaders based on maximum connected component decomposition method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
  22. Hernández Serrano, Daniel & Sánchez Gómez, Darío, 2020. "Centrality measures in simplicial complexes: Applications of topological data analysis to network science," Applied Mathematics and Computation, Elsevier, vol. 382(C).
  23. Wang, Zhishuang & Guo, Quantong & Sun, Shiwen & Xia, Chengyi, 2019. "The impact of awareness diffusion on SIR-like epidemics in multiplex networks," Applied Mathematics and Computation, Elsevier, vol. 349(C), pages 134-147.
  24. Cerdeira, J. Orestes & Silva, Pedro C., 2021. "A centrality notion for graphs based on Tukey depth," Applied Mathematics and Computation, Elsevier, vol. 409(C).
  25. Wang, Weiping & Guo, Junjiang & Wang, Zhen & Wang, Hao & Cheng, Jun & Wang, Chunyang & Yuan, Manman & Kurths, Jürgen & Luo, Xiong & Gao, Yang, 2021. "Abnormal flow detection in industrial control network based on deep reinforcement learning," Applied Mathematics and Computation, Elsevier, vol. 409(C).
  26. Xu, Paiheng & Zhang, Rong & Deng, Yong, 2018. "A novel visibility graph transformation of time series into weighted networks," Chaos, Solitons & Fractals, Elsevier, vol. 117(C), pages 201-208.
  27. Teqi Dai & Tiantian Ding & Qingfang Liu & Bingxin Liu, 2022. "Node Centrality Comparison between Bus Line and Passenger Flow Networks in Beijing," Sustainability, MDPI, vol. 14(22), pages 1-14, November.
  28. Zhou, Jing & Li, Wei & Wang, Jiaxin & Ding, Shuai & Xia, Chengyi, 2019. "Default prediction in P2P lending from high-dimensional data based on machine learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
  29. Li, Huichun & Zhang, Xue & Zhao, Chengli, 2021. "Explaining social events through community evolution on temporal networks," Applied Mathematics and Computation, Elsevier, vol. 404(C).
  30. Yao, Hongxing & Memon, Bilal Ahmed, 2019. "Network topology of FTSE 100 Index companies: From the perspective of Brexit," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1248-1262.
  31. Curado, Manuel & Tortosa, Leandro & Vicent, Jose F., 2021. "Identifying mobility patterns by means of centrality algorithms in multiplex networks," Applied Mathematics and Computation, Elsevier, vol. 406(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.