IDEAS home Printed from https://ideas.repec.org/r/eee/agiwat/v69y2004i1p1-11.html
   My bibliography  Save this item

Sensitivity of evapotranspiration to global warming: a case study of arid zone of Rajasthan (India)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Qi Hu & Xueqing Ma & Huayun He & Feifei Pan & Qijin He & Binxiang Huang & Xuebiao Pan, 2019. "Warming and Dimming: Interactive Impacts on Potential Summer Maize Yield in North China Plain," Sustainability, MDPI, vol. 11(9), pages 1-15, May.
  2. Hossein Tabari & Jaefar Nikbakht & P. Hosseinzadeh Talaee, 2012. "Identification of Trend in Reference Evapotranspiration Series with Serial Dependence in Iran," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(8), pages 2219-2232, June.
  3. Phogat, V. & Cox, J.W. & Šimůnek, J., 2018. "Identifying the future water and salinity risks to irrigated viticulture in the Murray-Darling Basin, South Australia," Agricultural Water Management, Elsevier, vol. 201(C), pages 107-117.
  4. Tang, Bo & Tong, Ling & Kang, Shaozhong & Zhang, Lu, 2011. "Impacts of climate variability on reference evapotranspiration over 58 years in the Haihe river basin of north China," Agricultural Water Management, Elsevier, vol. 98(10), pages 1660-1670, August.
  5. Mohammad Reza KHALEGHI, 2018. "Application of dendroclimatology in evaluation of climatic changes," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 64(3), pages 139-147.
  6. Zhou, Hong & Zhao, Wen zhi, 2019. "Modeling soil water balance and irrigation strategies in a flood-irrigated wheat-maize rotation system. A case in dry climate, China," Agricultural Water Management, Elsevier, vol. 221(C), pages 286-302.
  7. umer, Umer Jeelanie Banday & Ranjan, Ranjan Aneja, 2014. "Deterioration of Agricultural Productivity Due to Climate Change in Haryana," MPRA Paper 72654, University Library of Munich, Germany.
  8. P. Attarod & F. Rostami & A. Dolatshahi & S.M.M. Sadeghi & G. Zahedi Amiri & V. Bayramzadeh, 2016. "Do changes in meteorological parameters and evapotranspiration affect declining oak forests of Iran?," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 62(12), pages 553-561.
  9. Jie Zhao & Zongxue Xu & Vijay P. Singh & Depeng Zuo & Mo Li, 2016. "Sensitivity of Potential Evapotranspiration to Climate and Vegetation in a Water-Limited Basin at the Northern Edge of Tibetan Plateau," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(13), pages 4667-4680, October.
  10. Garcia-Prats, A. & Carricondo-Anton, J.M. & Jiménez-Bello, M.A. & Manzano Juárez, J. & López-Pérez, E. & Pulido-Velazquez, M., 2023. "Dynamic procedure for daily PM56 ETo mapping conducive to site-specific irrigation recommendations in areas covered by agricultural weather networks," Agricultural Water Management, Elsevier, vol. 287(C).
  11. Alireza Sharifi & Yagob Dinpashoh, 2014. "Sensitivity Analysis of the Penman-Monteith reference Crop Evapotranspiration to Climatic Variables in Iran," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(15), pages 5465-5476, December.
  12. Wang, Jianqing & Liu, Xiaoyu & Cheng, Kun & Zhang, Xuhui & Li, Lianqing & Pan, Genxing, 2018. "Winter wheat water requirement and utilization efficiency under simulated climate change conditions: A Penman-Monteith model evaluation," Agricultural Water Management, Elsevier, vol. 197(C), pages 100-109.
  13. Tong, Ling & Kang, Shaozhong & Zhang, Lu, 2007. "Temporal and spatial variations of evapotranspiration for spring wheat in the Shiyang river basin in northwest China," Agricultural Water Management, Elsevier, vol. 87(3), pages 241-250, February.
  14. Paweł Bogawski & Ewa Bednorz, 2016. "Atmospheric conditions controlling extreme summertime evapotranspiration in Poland (central Europe)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 55-69, March.
  15. Brijesh Yadav & Lal Chand Malav & Shruti V. Singh & Sushil Kumar Kharia & Md. Yeasin & Ram Narayan Singh & Mahaveer Nogiya & Roshan Lal Meena & Pravash Chandra Moharana & Nirmal Kumar & Ram Prasad Sha, 2023. "Spatiotemporal Responses of Vegetation to Hydroclimatic Factors over Arid and Semi-arid Climate," Sustainability, MDPI, vol. 15(21), pages 1-29, October.
  16. Ali Mokhtari & Hamideh Noory & Majid Vazifedoust, 2018. "Performance of Different Surface Incoming Solar Radiation Models and Their Impacts on Reference Evapotranspiration," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(9), pages 3053-3070, July.
  17. Zhang, Xiaotao & Kang, Shaozhong & Zhang, Lu & Liu, Junqi, 2010. "Spatial variation of climatology monthly crop reference evapotranspiration and sensitivity coefficients in Shiyang river basin of northwest China," Agricultural Water Management, Elsevier, vol. 97(10), pages 1506-1516, October.
  18. P. Attarod & M. Aoki & V. Bayramzadeh, 2009. "Measurements of the actual evapotranspiration and crop coefficients of summer and winter seasons crops in Japan," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 55(3), pages 121-127.
  19. Zhao, Wenzhi & Liu, Bing & Zhang, Zhihui, 2010. "Water requirements of maize in the middle Heihe River basin, China," Agricultural Water Management, Elsevier, vol. 97(2), pages 215-223, February.
  20. Li, Zhibin & Feng, Bianbian & Wang, Wei & Yang, Xi & Wu, Pute & Zhuo, La, 2022. "Spatial and temporal sensitivity of water footprint assessment in crop production to modelling inputs and parameters," Agricultural Water Management, Elsevier, vol. 271(C).
  21. Paweł Bogawski & Ewa Bednorz, 2016. "Atmospheric conditions controlling extreme summertime evapotranspiration in Poland (central Europe)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 55-69, March.
  22. Yang, Xiaolin & Gao, Wangsheng & Shi, Quanhong & Chen, Fu & Chu, Qingquan, 2013. "Impact of climate change on the water requirement of summer maize in the Huang-Huai-Hai farming region," Agricultural Water Management, Elsevier, vol. 124(C), pages 20-27.
  23. Liang, Liyin & Peng, Shaolin & Sun, Junmei & Chen, Leiyi & Cao, Yuexiu, 2010. "Estimation of annual potential evapotranspiration at regional scale based on the effect of moisture on soil respiration," Ecological Modelling, Elsevier, vol. 221(22), pages 2668-2674.
  24. Liting Liu & Chunsheng Hu & Jørgen E. Olesen & Zhaoqiang Ju & Xiying Zhang, 2016. "Effect of warming and nitrogen addition on evapotranspiration and water use efficiency in a wheat-soybean/fallow rotation from 2010 to 2014," Climatic Change, Springer, vol. 139(3), pages 565-578, December.
  25. Serdar Göncü & Erdem Albek, 2010. "Modeling Climate Change Effects on Streams and Reservoirs with HSPF," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(4), pages 707-726, March.
  26. Zhang, Lei & Traore, Seydou & Cui, Yuanlai & Luo, Yufeng & Zhu, Ge & Liu, Bo & Fipps, Guy & Karthikeyan, R. & Singh, Vijay, 2019. "Assessment of spatiotemporal variability of reference evapotranspiration and controlling climate factors over decades in China using geospatial techniques," Agricultural Water Management, Elsevier, vol. 213(C), pages 499-511.
  27. Jayaraman, T., 2011. "Climate Change and Agriculture: A Review Article with Special Reference to India," Review of Agrarian Studies, Foundation for Agrarian Studies, vol. 1(2), December.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.