IDEAS home Printed from https://ideas.repec.org/r/eee/agiwat/v217y2019icp303-315.html
   My bibliography  Save this item

Evapotranspiration evaluation models based on machine learning algorithms—A comparative study

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Phon Sheng Hou & Lokman Mohd Fadzil & Selvakumar Manickam & Mahmood A. Al-Shareeda, 2023. "Vector Autoregression Model-Based Forecasting of Reference Evapotranspiration in Malaysia," Sustainability, MDPI, vol. 15(4), pages 1-18, February.
  2. So Young Woo & Chung Gil Jung & Ji Wan Lee & Seong Joon Kim, 2019. "Evaluation of Watershed Scale Aquatic Ecosystem Health by SWAT Modeling and Random Forest Technique," Sustainability, MDPI, vol. 11(12), pages 1-15, June.
  3. Halil Karahan & Mahmut Cetin & Muge Erkan Can & Omar Alsenjar, 2024. "Developing a New ANN Model to Estimate Daily Actual Evapotranspiration Using Limited Climatic Data and Remote Sensing Techniques for Sustainable Water Management," Sustainability, MDPI, vol. 16(6), pages 1-17, March.
  4. Fuentes, Sigfredo & Ortega-Farías, Samuel & Carrasco-Benavides, Marcos & Tongson, Eden & Gonzalez Viejo, Claudia, 2024. "Actual evapotranspiration and energy balance estimation from vineyards using micro-meteorological data and machine learning modeling," Agricultural Water Management, Elsevier, vol. 297(C).
  5. Mohammadi, Babak & Mehdizadeh, Saeid, 2020. "Modeling daily reference evapotranspiration via a novel approach based on support vector regression coupled with whale optimization algorithm," Agricultural Water Management, Elsevier, vol. 237(C).
  6. Kelechi Igwe & Vaishali Sharda & Trevor Hefley, 2023. "Evaluating the Impact of Future Seasonal Climate Extremes on Crop Evapotranspiration of Maize in Western Kansas Using a Machine Learning Approach," Land, MDPI, vol. 12(8), pages 1-26, July.
  7. Yin, Juan & Deng, Zhen & Ines, Amor V.M. & Wu, Junbin & Rasu, Eeswaran, 2020. "Forecast of short-term daily reference evapotranspiration under limited meteorological variables using a hybrid bi-directional long short-term memory model (Bi-LSTM)," Agricultural Water Management, Elsevier, vol. 242(C).
  8. Chia, Min Yan & Huang, Yuk Feng & Koo, Chai Hoon, 2021. "Swarm-based optimization as stochastic training strategy for estimation of reference evapotranspiration using extreme learning machine," Agricultural Water Management, Elsevier, vol. 243(C).
  9. De Caro, Dario & Ippolito, Matteo & Cannarozzo, Marcella & Provenzano, Giuseppe & Ciraolo, Giuseppe, 2023. "Assessing the performance of the Gaussian Process Regression algorithm to fill gaps in the time-series of daily actual evapotranspiration of different crops in temperate and continental zones using gr," Agricultural Water Management, Elsevier, vol. 290(C).
  10. Jamei, Mehdi & Maroufpoor, Saman & Aminpour, Younes & Karbasi, Masoud & Malik, Anurag & Karimi, Bakhtiar, 2022. "Developing hybrid data-intelligent method using Boruta-random forest optimizer for simulation of nitrate distribution pattern," Agricultural Water Management, Elsevier, vol. 270(C).
  11. Ohana-Levi, Noa & Ben-Gal, Alon & Munitz, Sarel & Netzer, Yishai, 2022. "Grapevine crop evapotranspiration and crop coefficient forecasting using linear and non-linear multiple regression models," Agricultural Water Management, Elsevier, vol. 262(C).
  12. Soo-Jin Kim & Seung-Jong Bae & Min-Won Jang, 2022. "Linear Regression Machine Learning Algorithms for Estimating Reference Evapotranspiration Using Limited Climate Data," Sustainability, MDPI, vol. 14(18), pages 1-20, September.
  13. Fabio Di Nunno & Marco De Matteo & Giovanni Izzo & Francesco Granata, 2023. "A Combined Clustering and Trends Analysis Approach for Characterizing Reference Evapotranspiration in Veneto," Sustainability, MDPI, vol. 15(14), pages 1-23, July.
  14. Elbeltagi, Ahmed & Deng, Jinsong & Wang, Ke & Hong, Yang, 2020. "Crop Water footprint estimation and modeling using an artificial neural network approach in the Nile Delta, Egypt," Agricultural Water Management, Elsevier, vol. 235(C).
  15. Fu, Chong & Song, Xiaoyu & Li, Lanjun & Zhao, Xinkai & Meng, Pengfei & Wang, Long & Wei, Wanyin & Guo, Songle & Zhu, Deming & He, Xi & Yang, Dongdan & Li, Huaiyou, 2024. "Combining the FAO-56 method and the complementary principle to partition the evapotranspiration of typical plantations and grasslands in the Chinese Loess Plateau," Agricultural Water Management, Elsevier, vol. 295(C).
  16. Chaoqing Huang & Chao He & Qian Wu & MinhThu Nguyen & Song Hong, 2023. "Classification of the Land Cover of a Megacity in ASEAN Using Two Band Combinations and Three Machine Learning Algorithms: A Case Study in Ho Chi Minh City," Sustainability, MDPI, vol. 15(8), pages 1-27, April.
  17. Filgueiras, Roberto & Almeida, Thomé Simpliciano & Mantovani, Everardo Chartuni & Dias, Santos Henrique Brant & Fernandes-Filho, Elpídio Inácio & da Cunha, Fernando França & Venancio, Luan Peroni, 2020. "Soil water content and actual evapotranspiration predictions using regression algorithms and remote sensing data," Agricultural Water Management, Elsevier, vol. 241(C).
  18. Beáta Novotná & Ľuboš Jurík & Ján Čimo & Jozef Palkovič & Branislav Chvíla & Vladimír Kišš, 2022. "Machine Learning for Pan Evaporation Modeling in Different Agroclimatic Zones of the Slovak Republic (Macro-Regions)," Sustainability, MDPI, vol. 14(6), pages 1-22, March.
  19. Roy, Dilip Kumar & Lal, Alvin & Sarker, Khokan Kumer & Saha, Kowshik Kumar & Datta, Bithin, 2021. "Optimization algorithms as training approaches for prediction of reference evapotranspiration using adaptive neuro fuzzy inference system," Agricultural Water Management, Elsevier, vol. 255(C).
  20. Malik, Anurag & Jamei, Mehdi & Ali, Mumtaz & Prasad, Ramendra & Karbasi, Masoud & Yaseen, Zaher Mundher, 2022. "Multi-step daily forecasting of reference evapotranspiration for different climates of India: A modern multivariate complementary technique reinforced with ridge regression feature selection," Agricultural Water Management, Elsevier, vol. 272(C).
  21. Jiang, Xiaoman & Wang, Yuntao & A., Yinglan & Wang, Guoqiang & Zhang, Xiaojing & Ma, Guangwen & Duan, Limin & Liu, Kai, 2024. "Optimizing actual evapotranspiration simulation to identify evapotranspiration partitioning variations: A fusion of physical processes and machine learning techniques," Agricultural Water Management, Elsevier, vol. 295(C).
  22. Granata, Francesco & Di Nunno, Fabio, 2021. "Forecasting evapotranspiration in different climates using ensembles of recurrent neural networks," Agricultural Water Management, Elsevier, vol. 255(C).
  23. Zhang, Lei & Zhao, Xin & Zhu, Ge & He, Jun & Chen, Jian & Chen, Zhicheng & Traore, Seydou & Liu, Junguo & Singh, Vijay P., 2023. "Short-term daily reference evapotranspiration forecasting using temperature-based deep learning models in different climate zones in China," Agricultural Water Management, Elsevier, vol. 289(C).
  24. Ali Barzkar & Mohammad Najafzadeh & Farshad Homaei, 2022. "Evaluation of drought events in various climatic conditions using data-driven models and a reliability-based probabilistic model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(3), pages 1931-1952, February.
  25. Erdem Küçüktopcu & Emirhan Cemek & Bilal Cemek & Halis Simsek, 2023. "Hybrid Statistical and Machine Learning Methods for Daily Evapotranspiration Modeling," Sustainability, MDPI, vol. 15(7), pages 1-15, March.
  26. Mohammad Taghi Sattari & Halit Apaydin & Shahaboddin Shamshirband, 2020. "Performance Evaluation of Deep Learning-Based Gated Recurrent Units (GRUs) and Tree-Based Models for Estimating ETo by Using Limited Meteorological Variables," Mathematics, MDPI, vol. 8(6), pages 1-18, June.
  27. Chia, Min Yan & Huang, Yuk Feng & Koo, Chai Hoon, 2022. "Resolving data-hungry nature of machine learning reference evapotranspiration estimating models using inter-model ensembles with various data management schemes," Agricultural Water Management, Elsevier, vol. 261(C).
  28. Zhu, Wenbin & Yu, Xiaoyu & Wei, Jiaxing & Lv, Aifeng, 2024. "Surface flux equilibrium estimates of evaporative fraction and evapotranspiration at global scale: Accuracy evaluation and performance comparison," Agricultural Water Management, Elsevier, vol. 291(C).
  29. Fang, Heng & Li, Yuannong & Gu, Xiaobo & Du, Yadan & Chen, Pengpeng & Hu, Hongxiang, 2024. "Evapotranspiration, water use efficiency, and yield for film mulched maize under different nitrogen-fertilization rates and climate conditions," Agricultural Water Management, Elsevier, vol. 301(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.