IDEAS home Printed from https://ideas.repec.org/r/ect/emjrnl/v6y2003i2p261-290.html
   My bibliography  Save this item

Semiparametric estimation of Value at Risk

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Mstislav Elagin, 2008. "Locally adaptive estimation methods with application to univariate time series," Papers 0812.0449, arXiv.org.
  2. Gery Geenens & Richard Dunn, 2017. "A nonparametric copula approach to conditional Value-at-Risk," Papers 1712.05527, arXiv.org, revised Oct 2019.
  3. Ramon Alemany & Catalina Bolancé & Montserrat Guillén, 2012. "Nonparametric estimation of Value-at-Risk," Working Papers XREAP2012-19, Xarxa de Referència en Economia Aplicada (XREAP), revised Oct 2012.
  4. Miguel Antonio Alba Suárez & Wilmer Pineda-Ríos & Javier Deaza Chaves, 2019. "Análisis comparativo de las metodologías de estimación semiparamétricas y vía cópulas del Valor en Riesgo (VaR) en el mercado accionario colombiano," Remef - Revista Mexicana de Economía y Finanzas Nueva Época REMEF (The Mexican Journal of Economics and Finance), Instituto Mexicano de Ejecutivos de Finanzas, IMEF, vol. 14(2), pages 279-307, Abril-Jun.
  5. Geenens, Gery & Dunn, Richard, 2022. "A nonparametric copula approach to conditional Value-at-Risk," Econometrics and Statistics, Elsevier, vol. 21(C), pages 19-37.
  6. Jeroen Rombouts & Marno Verbeek, 2009. "Evaluating portfolio Value-at-Risk using semi-parametric GARCH models," Quantitative Finance, Taylor & Francis Journals, vol. 9(6), pages 737-745.
  7. Kwangmin Jung & Donggyu Kim & Seunghyeon Yu, 2022. "Next generation models for portfolio risk management: An approach using financial big data," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 89(3), pages 765-787, September.
  8. Zongwu Cai & Xian Wang, 2013. "Nonparametric Methods for Estimating Conditional VaR and Expected Shortfall," Working Papers 2013-10-14, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
  9. repec:wyi:journl:002095 is not listed on IDEAS
  10. Escanciano, J. Carlos & Olmo, Jose, 2010. "Backtesting Parametric Value-at-Risk With Estimation Risk," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(1), pages 36-51.
  11. d’Addona, Stefano & Khanom, Najrin, 2022. "Estimating tail-risk using semiparametric conditional variance with an application to meme stocks," International Review of Economics & Finance, Elsevier, vol. 82(C), pages 241-260.
  12. Cai, Zongwu & Wang, Xian, 2008. "Nonparametric estimation of conditional VaR and expected shortfall," Journal of Econometrics, Elsevier, vol. 147(1), pages 120-130, November.
  13. Nieto, Maria Rosa & Ruiz, Esther, 2016. "Frontiers in VaR forecasting and backtesting," International Journal of Forecasting, Elsevier, vol. 32(2), pages 475-501.
  14. Jean-Paul Laurent & Hassan Omidi Firouzi, 2022. "Market Risk and Volatility Weighted Historical Simulation After Basel III," Working Papers hal-03679434, HAL.
  15. Jianqing Fan, 2004. "A selective overview of nonparametric methods in financial econometrics," Papers math/0411034, arXiv.org.
  16. Cristescu Marian Pompiliu & Nerişanu Raluca Andreea & Mara Dumitru Alexandru, 2022. "Using Data Mining in the Sentiment Analysis Process on the Financial Market," Journal of Social and Economic Statistics, Sciendo, vol. 11(1-2), pages 36-58, December.
  17. Alemany, Ramon & Bolancé, Catalina & Guillén, Montserrat, 2013. "A nonparametric approach to calculating value-at-risk," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 255-262.
  18. Escanciano, J. C. & Olmo, J., 2007. "Estimation risk effects on backtesting for parametric value-at-risk models," Working Papers 07/11, Department of Economics, City University London.
  19. Sancetta, A., 2007. "Online Forecast Combination for Dependent Heterogeneous Data," Cambridge Working Papers in Economics 0718, Faculty of Economics, University of Cambridge.
  20. Wang, Xiaoyu & Xie, Dejun & Jiang, Jingjing & Wu, Xiaoxia & He, Jia, 2017. "Value-at-Risk estimation with stochastic interest rate models for option-bond portfolios," Finance Research Letters, Elsevier, vol. 21(C), pages 10-20.
  21. Ye, Xu-Guo & Lin, Jin-Guan & Zhao, Yan-Yong & Hao, Hong-Xia, 2015. "Two-step estimation of the volatility functions in diffusion models with empirical applications," Journal of Empirical Finance, Elsevier, vol. 33(C), pages 135-159.
  22. Nieto, María Rosa, 2008. "Measuring financial risk : comparison of alternative procedures to estimate VaR and ES," DES - Working Papers. Statistics and Econometrics. WS ws087326, Universidad Carlos III de Madrid. Departamento de Estadística.
  23. Panagiotis Avramidis, 2016. "Adaptive likelihood estimator of conditional variance function," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(1), pages 132-151, March.
  24. repec:hum:wpaper:sfb649dp2006-033 is not listed on IDEAS
  25. Ramon Alemany & Catalina Bolance & Montserrat Guillen, 2014. "Accounting for severity of risk when pricing insurance products," Working Papers 2014-05, Universitat de Barcelona, UB Riskcenter.
  26. Taylor, James W., 2008. "Exponentially weighted information criteria for selecting among forecasting models," International Journal of Forecasting, Elsevier, vol. 24(3), pages 513-524.
  27. Jiarui Chu & Ludovic Tangpi, 2021. "Non-asymptotic estimation of risk measures using stochastic gradient Langevin dynamics," Papers 2111.12248, arXiv.org, revised Feb 2023.
  28. Fan, Jianqing & Fan, Yingying & Jiang, Jiancheng, 2007. "Dynamic Integration of Time- and State-Domain Methods for Volatility Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 618-631, June.
  29. Cong-Duc Tran & Minh-Tuan Phung & Fu-Ju Yang & Yi-Hsien Wang, 2020. "The Role of Gender Diversity in Downside Risk: Empirical Evidence from Vietnamese Listed Firms," Mathematics, MDPI, vol. 8(6), pages 1-22, June.
  30. Polzehl, Jörg & Spokoiny, Vladimir, 2006. "Varying coefficient GARCH versus local constant volatility modeling: Comparison of the predictive power," SFB 649 Discussion Papers 2006-033, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.