IDEAS home Printed from https://ideas.repec.org/r/cwl/cwldpp/2003.html
   My bibliography  Save this item

Pitfalls and Possibilities in Predictive Regression

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Demetrescu, Matei & Georgiev, Iliyan & Rodrigues, Paulo M.M. & Taylor, A.M. Robert, 2022. "Testing for episodic predictability in stock returns," Journal of Econometrics, Elsevier, vol. 227(1), pages 85-113.
  2. Yan, Cheng & Wang, Xichen, 2018. "The non-persistent relationship between foreign equity flows and emerging stock market returns across quantiles," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 56(C), pages 38-54.
  3. Zongwu Cai & Seong Yeon Chang, 2018. "A New Test In A Predictive Regression with Structural Breaks," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 201811, University of Kansas, Department of Economics, revised Dec 2018.
  4. J. Roderick McCrorie, 2021. "Moments in Pearson's Four-Step Uniform Random Walk Problem and Other Applications of Very Well-Poised Generalized Hypergeometric Series," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 244-281, November.
  5. Cardak, Buly A. & Martin, Vance L., 2023. "Household willingness to take financial risk: Stockmarket movements and life‐cycle effects," Journal of Banking & Finance, Elsevier, vol. 149(C).
  6. Tu, Yundong & Xie, Xinling, 2023. "Penetrating sporadic return predictability," Journal of Econometrics, Elsevier, vol. 237(1).
  7. Zhou, Weilun & Gao, Jiti & Harris, David & Kew, Hsein, 2024. "Semi-parametric single-index predictive regression models with cointegrated regressors," Journal of Econometrics, Elsevier, vol. 238(1).
  8. Demetrescu, Matei & Rodrigues, Paulo M.M., 2022. "Residual-augmented IVX predictive regression," Journal of Econometrics, Elsevier, vol. 227(2), pages 429-460.
  9. Bingduo Yang & Xiaohui Liu & Liang Peng & Zongwu Cai, 2018. "Unified Tests for a Dynamic Predictive Regression," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 201808, University of Kansas, Department of Economics, revised Sep 2018.
  10. Mohitosh Kejriwal & Xuewen Yu, 2019. "Generalized Forecasr Averaging in Autoregressions with a Near Unit Root," Purdue University Economics Working Papers 1318, Purdue University, Department of Economics.
  11. Zongwu Cai & Haiqiang Chen & Xiaosai Liao, 2020. "A New Robust Inference for Predictive Quantile Regression," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202002, University of Kansas, Department of Economics, revised Feb 2020.
  12. Mei, Ziwei & Shi, Zhentao, 2024. "On LASSO for high dimensional predictive regression," Journal of Econometrics, Elsevier, vol. 242(2).
  13. Lee, Ji Hyung & Shi, Zhentao & Gao, Zhan, 2022. "On LASSO for predictive regression," Journal of Econometrics, Elsevier, vol. 229(2), pages 322-349.
  14. Chevillon, Guillaume & Mavroeidis, Sophocles, 2018. "Perpetual learning and apparent long memory," Journal of Economic Dynamics and Control, Elsevier, vol. 90(C), pages 343-365.
  15. Andersen, Torben G. & Varneskov, Rasmus T., 2021. "Consistent inference for predictive regressions in persistent economic systems," Journal of Econometrics, Elsevier, vol. 224(1), pages 215-244.
  16. Zhishui Hu & Ioannis Kasparis & Qiying Wang, 2020. "Locally trimmed least squares: conventional inference in possibly nonstationary models," Papers 2006.12595, arXiv.org.
  17. Demetrescu, Matei & Rodrigues, Paulo M.M. & Taylor, A.M. Robert, 2023. "Transformed regression-based long-horizon predictability tests," Journal of Econometrics, Elsevier, vol. 237(2).
  18. Ke-Li Xu & Junjie Guo, 2021. "A New Test for Multiple Predictive Regression," CAEPR Working Papers 2022-001 Classification-C, Center for Applied Economics and Policy Research, Department of Economics, Indiana University Bloomington.
  19. Jin Seo Cho & Peter C. B. Phillips & Juwon Seo, 2023. "Functional Data Inference in a Parametric Quantile Model applied to Lifetime Income Curves," Working papers 2023rwp-211, Yonsei University, Yonsei Economics Research Institute.
  20. Chevillon, Guillaume, 2017. "Robustness of Multistep Forecasts and Predictive Regressions at Intermediate and Long Horizons," ESSEC Working Papers WP1710, ESSEC Research Center, ESSEC Business School.
  21. Harvey, David I. & Leybourne, Stephen J. & Taylor, A.M. Robert, 2021. "Simple tests for stock return predictability with good size and power properties," Journal of Econometrics, Elsevier, vol. 224(1), pages 198-214.
  22. Biqing Cai & Jiti Gao, 2017. "A simple nonlinear predictive model for stock returns," Monash Econometrics and Business Statistics Working Papers 18/17, Monash University, Department of Econometrics and Business Statistics.
  23. Jayetileke, Harshanie L. & Wang, You-Gan & Zhu, Min, 2021. "Predictive regression with p-lags and order-q autoregressive predictors," Journal of Empirical Finance, Elsevier, vol. 62(C), pages 282-293.
  24. Weilun Zhou & Jiti Gao & David Harris & Hsein Kew, 2019. "Semiparametric Single-index Predictive Regression," Monash Econometrics and Business Statistics Working Papers 25/19, Monash University, Department of Econometrics and Business Statistics.
  25. Cai, Zongwu & Chen, Haiqiang & Liao, Xiaosai, 2023. "A new robust inference for predictive quantile regression," Journal of Econometrics, Elsevier, vol. 234(1), pages 227-250.
  26. Ziwei Mei & Zhentao Shi, 2022. "On LASSO for High Dimensional Predictive Regression," Papers 2212.07052, arXiv.org, revised Jan 2024.
  27. Nartea, Gilbert V. & Valera, Harold Glenn A. & Valera, Maria Luisa G., 2021. "Mean reversion in Asia-Pacific stock prices: New evidence from quantile unit root tests," International Review of Economics & Finance, Elsevier, vol. 73(C), pages 214-230.
  28. Xiaohui Liu & Yuzi Liu & Yao Rao & Fucai Lu, 2021. "A Unified test for the Intercept of a Predictive Regression Model," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 83(2), pages 571-588, April.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.