IDEAS home Printed from https://ideas.repec.org/r/cup/etheor/v25y2009i03p819-846_09.html
   My bibliography  Save this item

Copula-Based Characterizations For Higher Order Markov Processes

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Beare, Brendan K., 2012. "Archimedean Copulas And Temporal Dependence," Econometric Theory, Cambridge University Press, vol. 28(6), pages 1165-1185, December.
  2. Xiaohong Chen & Zhijie Xiao & Bo Wang, 2020. "Copula-Based Time Series With Filtered Nonstationarity," Cowles Foundation Discussion Papers 2242R, Cowles Foundation for Research in Economics, Yale University, revised Oct 2020.
  3. Azam, Kazim & Pitt, Michael, 2014. "Bayesian Inference for a Semi-Parametric Copula-based Markov Chain," Economic Research Papers 270232, University of Warwick - Department of Economics.
  4. Jean-David Fermanian, 2012. "An overview of the goodness-of-fit test problem for copulas," Papers 1211.4416, arXiv.org.
  5. Power, Gabriel J. & Vedenov, Dmitry V., 2008. "The Shape of the Optimal Hedge Ratio: Modeling Joint Spot-Futures Prices using an Empirical Copula-GARCH Model," 2008 Conference, April 21-22, 2008, St. Louis, Missouri 37609, NCCC-134 Conference on Applied Commodity Price Analysis, Forecasting, and Market Risk Management.
  6. Beare, Brendan K. & Seo, Juwon, 2014. "Time Irreversible Copula-Based Markov Models," Econometric Theory, Cambridge University Press, vol. 30(5), pages 923-960, October.
  7. Righi, Marcelo Brutti & Ceretta, Paulo Sergio, 2013. "Estimating non-linear serial and cross-interdependence between financial assets," Journal of Banking & Finance, Elsevier, vol. 37(3), pages 837-846.
  8. Eugen Ivanov & Aleksey Min & Franz Ramsauer, 2017. "Copula-Based Factor Models for Multivariate Asset Returns," Econometrics, MDPI, vol. 5(2), pages 1-24, May.
  9. Martin Bladt & Alexander J. McNeil, 2020. "Time series copula models using d-vines and v-transforms," Papers 2006.11088, arXiv.org, revised Jul 2021.
  10. Henry Penikas, 2016. "Copula-Based Univariate Time Series Structural Shift Identification Test," Papers 1609.05056, arXiv.org.
  11. Smith, Michael Stanley, 2015. "Copula modelling of dependence in multivariate time series," International Journal of Forecasting, Elsevier, vol. 31(3), pages 815-833.
  12. Ibragimov, Rustam & Prokhorov, Artem, 2016. "Heavy tails and copulas: Limits of diversification revisited," Economics Letters, Elsevier, vol. 149(C), pages 102-107.
  13. Azam, Kazim & Pitt, Michael, 2014. "Bayesian Inference for a Semi-Parametric Copula-based Markov Chain," The Warwick Economics Research Paper Series (TWERPS) 1051, University of Warwick, Department of Economics.
  14. Bladt Martin & McNeil Alexander J., 2022. "Time series with infinite-order partial copula dependence," Dependence Modeling, De Gruyter, vol. 10(1), pages 87-107, January.
  15. Shulin Zhang & Qian M. Zhou & Huazhen Lin, 2021. "Goodness-of-fit test of copula functions for semi-parametric univariate time series models," Statistical Papers, Springer, vol. 62(4), pages 1697-1721, August.
  16. Nadarajah, Saralees, 2015. "Expansions for bivariate copulas," Statistics & Probability Letters, Elsevier, vol. 100(C), pages 77-84.
  17. Alexander J. McNeil, 2020. "Modelling volatile time series with v-transforms and copulas," Papers 2002.10135, arXiv.org, revised Jan 2021.
  18. Patton, Andrew J., 2012. "A review of copula models for economic time series," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 4-18.
  19. Juwon Seo, 2018. "Randomization Tests for Equality in Dependence Structure," Papers 1811.02105, arXiv.org.
  20. Chollete, Lorán & de la Peña, Victor & Lu, Ching-Chih, 2012. "International diversification: An extreme value approach," Journal of Banking & Finance, Elsevier, vol. 36(3), pages 871-885.
  21. Nagler, Thomas & Krüger, Daniel & Min, Aleksey, 2022. "Stationary vine copula models for multivariate time series," Journal of Econometrics, Elsevier, vol. 227(2), pages 305-324.
  22. Overbeck Ludger & Schmidt Wolfgang M., 2015. "Multivariate Markov Families of Copulas," Dependence Modeling, De Gruyter, vol. 3(1), pages 1-13, October.
  23. Michael Stanley Smith, 2021. "Implicit Copulas: An Overview," Papers 2109.04718, arXiv.org.
  24. Liang Zhu & Christine Lim & Wenjun Xie & Yuan Wu, 2017. "Analysis of tourism demand serial dependence structure for forecasting," Tourism Economics, , vol. 23(7), pages 1419-1436, November.
  25. Fermanian, Jean-David & Wegkamp, Marten H., 2012. "Time-dependent copulas," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 19-29.
  26. Wei, Li & Yuan, Zhongyi, 2016. "The loss given default of a low-default portfolio with weak contagion," Insurance: Mathematics and Economics, Elsevier, vol. 66(C), pages 113-123.
  27. Cherubini, Umberto & Mulinacci, Sabrina & Romagnoli, Silvia, 2011. "A copula-based model of speculative price dynamics in discrete time," Journal of Multivariate Analysis, Elsevier, vol. 102(6), pages 1047-1063, July.
  28. Rubén Loaiza‐Maya & Michael S. Smith & Worapree Maneesoonthorn, 2018. "Time series copulas for heteroskedastic data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(3), pages 332-354, April.
  29. Chen, Xiaohong & Xiao, Zhijie & Wang, Bo, 2022. "Copula-based time series with filtered nonstationarity," Journal of Econometrics, Elsevier, vol. 228(1), pages 127-155.
  30. Wu, Shaomin, 2019. "A failure process model with the exponential smoothing of intensity functions," European Journal of Operational Research, Elsevier, vol. 275(2), pages 502-513.
  31. Longla, Martial & Muia Nthiani, Mathias & Djongreba Ndikwa, Fidel, 2022. "Dependence and mixing for perturbations of copula-based Markov chains," Statistics & Probability Letters, Elsevier, vol. 180(C).
  32. Smith, Michael Stanley, 2023. "Implicit Copulas: An Overview," Econometrics and Statistics, Elsevier, vol. 28(C), pages 81-104.
  33. Fred Espen Benth & Giulia Di Nunno & Dennis Schroers, 2022. "Copula measures and Sklar's theorem in arbitrary dimensions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(3), pages 1144-1183, September.
  34. Brendan K. Beare & Juwon Seo, 2015. "Vine Copula Specifications for Stationary Multivariate Markov Chains," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(2), pages 228-246, March.
  35. Fang, Jun & Jiang, Fan & Liu, Yong & Yang, Jingping, 2020. "Copula-based Markov process," Insurance: Mathematics and Economics, Elsevier, vol. 91(C), pages 166-187.
  36. Virbickaitė, Audronė & Ausín, M. Concepción & Galeano, Pedro, 2020. "Copula stochastic volatility in oil returns: Approximate Bayesian computation with volatility prediction," Energy Economics, Elsevier, vol. 92(C).
  37. Czado, Claudia & Ivanov, Eugen & Okhrin, Yarema, 2019. "Modelling temporal dependence of realized variances with vines," Econometrics and Statistics, Elsevier, vol. 12(C), pages 198-216.
  38. Bladt, Martin & McNeil, Alexander J., 2022. "Time series copula models using d-vines and v-transforms," Econometrics and Statistics, Elsevier, vol. 24(C), pages 27-48.
  39. Patton, Andrew, 2013. "Copula Methods for Forecasting Multivariate Time Series," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 899-960, Elsevier.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.