IDEAS home Printed from https://ideas.repec.org/r/cup/etheor/v11y1995i05p888-911_00.html
   My bibliography  Save this item

Problems with the Asymptotic Theory of Maximum Likelihood Estimation in Integrated and Cointegrated Systems

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Phillips, Peter C.B. & Li, Degui & Gao, Jiti, 2017. "Estimating smooth structural change in cointegration models," Journal of Econometrics, Elsevier, vol. 196(1), pages 180-195.
  2. D. S. Poskitt, 2004. "On The Identification and Estimation of Partially Nonstationary ARMAX Systems," Monash Econometrics and Business Statistics Working Papers 20/04, Monash University, Department of Econometrics and Business Statistics.
  3. Park, Joon Y & Phillips, Peter C B, 2001. "Nonlinear Regressions with Integrated Time Series," Econometrica, Econometric Society, vol. 69(1), pages 117-161, January.
  4. H. Peter Boswijk & Jurgen A. Doornik, 2004. "Identifying, estimating and testing restricted cointegrated systems: An overview," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 58(4), pages 440-465, November.
  5. Seo, Byeongseon, 1999. "Distribution theory for unit root tests with conditional heteroskedasticity1," Journal of Econometrics, Elsevier, vol. 91(1), pages 113-144, July.
  6. M. Hashem Pesaran & Yongcheol Shin, 2002. "Long-Run Structural Modelling," Econometric Reviews, Taylor & Francis Journals, vol. 21(1), pages 49-87.
  7. Christis Katsouris, 2023. "Structural Analysis of Vector Autoregressive Models," Papers 2312.06402, arXiv.org, revised Feb 2024.
  8. Boswijk, H. Peter & Cavaliere, Giuseppe & Rahbek, Anders & Taylor, A.M. Robert, 2016. "Inference on co-integration parameters in heteroskedastic vector autoregressions," Journal of Econometrics, Elsevier, vol. 192(1), pages 64-85.
  9. Robinson, Peter M. & Hualde, Javier, 2003. "Cointegration in fractional systems with unknown integration orders," LSE Research Online Documents on Economics 2223, London School of Economics and Political Science, LSE Library.
  10. Sokbae Lee & Myung Hwan Seo & Youngki Shin, 2017. "Correction," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 883-883, April.
  11. Nedeljkovic, Milan, 2008. "Testing for Smooth Transition Nonlinearity in Adjustments of Cointegrating Systems," Economic Research Papers 269887, University of Warwick - Department of Economics.
  12. Yongcheol Shin & Ron P Smith & Mohammad Hashem Pesaran, 1998. "Pooled Mean Group Estimation of Dynamic Heterogeneous Panels," Edinburgh School of Economics Discussion Paper Series 16, Edinburgh School of Economics, University of Edinburgh.
  13. Kristensen, Dennis & Shin, Yongseok, 2012. "Estimation of dynamic models with nonparametric simulated maximum likelihood," Journal of Econometrics, Elsevier, vol. 167(1), pages 76-94.
  14. Dennis Kristensen & Anders Rahbek, 2007. "Likelihood-Based Inference in Nonlinear Error-Correction Models," CREATES Research Papers 2007-38, Department of Economics and Business Economics, Aarhus University.
  15. Chambers, M.J. & McCrorie, J.R., 2004. "Frequency Domain Gaussian Estimation of Temporally Aggregated Cointegrated Systems," Discussion Paper 2004-40, Tilburg University, Center for Economic Research.
  16. Robert M. deJong, 2000. "Nonlinear Minimization Estimators in the Presence of Cointegrating Relations," Econometric Society World Congress 2000 Contributed Papers 1651, Econometric Society.
  17. Hernández, Juan R., 2016. "Unit Root Testing in ARMA Models: A Likelihood Ratio Approach," MPRA Paper 100857, University Library of Munich, Germany.
  18. Zhou, Weilun & Gao, Jiti & Harris, David & Kew, Hsein, 2024. "Semi-parametric single-index predictive regression models with cointegrated regressors," Journal of Econometrics, Elsevier, vol. 238(1).
  19. Kunpeng Li & Degui Li & Zhongwen Liang & Cheng Hsiao, 2017. "Estimation of semi-varying coefficient models with nonstationary regressors," Econometric Reviews, Taylor & Francis Journals, vol. 36(1-3), pages 354-369, March.
  20. Marcel Aloy & Gilles de Truchis, 2012. "Estimation and Testing for Fractional Cointegration," Working Papers halshs-00793206, HAL.
  21. Hualde, Javier & Robinson, Peter M., 2003. "Cointegration in fractional systems with unkown integration orders," LSE Research Online Documents on Economics 58050, London School of Economics and Political Science, LSE Library.
  22. Dietmar Bauer & Martin Wagner, 2002. "Asymptotic Properties of Pseudo Maximum Likelihood Estimates for Multiple Frequency I(1) Processes," Diskussionsschriften dp0205, Universitaet Bern, Departement Volkswirtschaft.
  23. Kristensen, Dennis & Rahbek, Anders, 2010. "Likelihood-based inference for cointegration with nonlinear error-correction," Journal of Econometrics, Elsevier, vol. 158(1), pages 78-94, September.
  24. de Jong, Robert M., 2002. "Nonlinear minimization estimators in the presence of cointegrating relations," Journal of Econometrics, Elsevier, vol. 110(2), pages 241-259, October.
  25. Kunpeng Li & Degui Li & Zhongwen Lian & Cheng Hsiao, 2013. "Semiparametric Profile Likelihood Estimation of Varying Coefficient Models with Nonstationary Regressors," Monash Econometrics and Business Statistics Working Papers 2/13, Monash University, Department of Econometrics and Business Statistics.
  26. Julien Hambuckers & Li Sun & Luca Trapin, 2023. "Measuring tail risk at high-frequency: An $L_1$-regularized extreme value regression approach with unit-root predictors," Papers 2301.01362, arXiv.org.
  27. Javier Hualde & Peter M Robinson, 2003. "Cointegration in Fractional Systems with Unkown Integration Orders," STICERD - Econometrics Paper Series 449, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
  28. H. Peter Boswijk & Jurgen A. Doornik, 2004. "Identifying, estimating and testing restricted cointegrated systems: An overview," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 58(4), pages 440-465.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.