My bibliography
Save this item
Option Pricing in a Fractional Brownian Motion Environment
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Cardone, Angelamaria & Conte, Dajana, 2020. "Stability analysis of spline collocation methods for fractional differential equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 178(C), pages 501-514.
- Didier Alain Njamen Njomen & Eric Djeutcha, 2019. "Solving Black-Schole Equation Using Standard Fractional Brownian Motion," Journal of Mathematics Research, Canadian Center of Science and Education, vol. 11(2), pages 142-157, April.
- Song, Wanqing & Li, Ming & Li, Yuanyuan & Cattani, Carlo & Chi, Chi-Hung, 2019. "Fractional Brownian motion: Difference iterative forecasting models," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 347-355.
- Lahiri, Ananya & Sen, Rituparna, 2020. "Fractional Brownian markets with time-varying volatility and high-frequency data," Econometrics and Statistics, Elsevier, vol. 16(C), pages 91-107.
- Wang, Wei & Cai, Guanghui & Tao, Xiangxing, 2021. "Pricing geometric asian power options in the sub-fractional brownian motion environment," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
- El-Beltagy, Mohamed & Etman, Ahmed & Maged, Sroor, 2022. "Development of a fractional Wiener-Hermite expansion for analyzing the fractional stochastic models," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
- Zhaoqiang Yang, 2017. "Efficient valuation and exercise boundary of American fractional lookback option in a mixed jump-diffusion model," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 4(02n03), pages 1-29, June.
- Kleinert, H. & Korbel, J., 2016. "Option pricing beyond Black–Scholes based on double-fractional diffusion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 449(C), pages 200-214.
- Kim, Kyong-Hui & Kim, Nam-Ung & Ju, Dong-Chol & Ri, Ju-Hyang, 2020. "Efficient hedging currency options in fractional Brownian motion model with jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
- Li Meng & Mei Wang, 2010. "Comparison of Black–Scholes Formula with Fractional Black–Scholes Formula in the Foreign Exchange Option Market with Changing Volatility," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 17(2), pages 99-111, June.
- Guido VENIER, 2008.
"A New Model For Stock Price Movements,"
Journal of Applied Economic Sciences, Spiru Haret University, Faculty of Financial Management and Accounting Craiova, vol. 3(3(5)_Fall), pages 329-350.
- Venier, Guido, 2007. "A new Model for Stock Price Movements," MPRA Paper 9146, University Library of Munich, Germany.
- Stoyan V. Stoyanov & Svetlozar T. Rachev & Stefan Mittnik & Frank J. Fabozzi, 2019.
"Pricing Derivatives In Hermite Markets,"
International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(06), pages 1-27, September.
- Svetlozar T. Rachev & Stefan Mittnik & Frank J. Fabozzi, 2016. "Pricing Derivatives in Hermite Markets," Papers 1612.07016, arXiv.org, revised Dec 2016.
- Stoyan V. Stoyanov & Svetlozar T. Rachev & Stefan Mittnik & Frank J. Fabozzi, 2017. "Pricing derivatives in Hermite markets," Papers 1709.09068, arXiv.org.
- Foad Shokrollahi, 2018. "Pricing European option with the short rate under Subdiffusive fractional Brownian motion regime," Papers 1805.00792, arXiv.org.
- Ciprian Necula, 2008. "Pricing European and Barrier Options in the Fractional Black-Scholes Market," Advances in Economic and Financial Research - DOFIN Working Paper Series 20, Bucharest University of Economics, Center for Advanced Research in Finance and Banking - CARFIB.
- Jianfen Feng & Xiaowei Huang & Juyue Hou & Chunxia Wang & Yan Zeng, 2018. "Carbon Bond Pricing And Model Selection," The Singapore Economic Review (SER), World Scientific Publishing Co. Pte. Ltd., vol. 63(02), pages 465-481, March.
- Eric Djeutcha & Didier Alain Njamen Njomen & Louis-Aimé Fono, 2019. "Solving Arbitrage Problem on the Financial Market Under the Mixed Fractional Brownian Motion With Hurst Parameter H ∈]1/2,3/4[," Journal of Mathematics Research, Canadian Center of Science and Education, vol. 11(1), pages 76-92, February.
- Calisse, Frank, 2019. "The impact of long-range dependence in the capital stock on interest rate and wealth distribution," VfS Annual Conference 2019 (Leipzig): 30 Years after the Fall of the Berlin Wall - Democracy and Market Economy 203591, Verein für Socialpolitik / German Economic Association.
- Yuecai Han & Xudong Zheng, 2022. "Approximate Pricing of Derivatives Under Fractional Stochastic Volatility Model," Papers 2210.15453, arXiv.org.
- Rostek, Stefan & Schöbel, Rainer, 2006. "Risk preference based option pricing in a fractional Brownian market," Tübinger Diskussionsbeiträge 299, University of Tübingen, School of Business and Economics.
- Jean-Philippe Aguilar & Jan Korbel, 2019. "Simple Formulas for Pricing and Hedging European Options in the Finite Moment Log-Stable Model," Risks, MDPI, vol. 7(2), pages 1-14, April.
- Jian Pan & Xiangying Zhou, 2017. "Pricing for options in a mixed fractional Hull–White interest rate model," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 4(01), pages 1-15, March.
- Paula Morales-Bañuelos & Nelson Muriel & Guillermo Fernández-Anaya, 2022. "A Modified Black-Scholes-Merton Model for Option Pricing," Mathematics, MDPI, vol. 10(9), pages 1-16, April.
- Stoyan V. Stoyanov & Yong Shin Kim & Svetlozar T. Rachev & Frank J. Fabozzi, 2017. "Option pricing for Informed Traders," Papers 1711.09445, arXiv.org.
- Foad Shokrollahi, 2017. "The evaluation of geometric Asian power options under time changed mixed fractional Brownian motion," Papers 1712.05254, arXiv.org.
- Laurini, Márcio Poletti & Hotta, Luiz Koodi, 2013. "Indirect Inference in fractional short-term interest rate diffusions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 94(C), pages 109-126.
- Foad Shokrollahi, 2016. "Subdiffusive fractional Brownian motion regime for pricing currency options under transaction costs," Papers 1612.06665, arXiv.org, revised Aug 2017.
- Ciprian Necula, 2008. "A Framework for Derivative Pricing in the Fractional Black-Scholes Market," Advances in Economic and Financial Research - DOFIN Working Paper Series 19, Bucharest University of Economics, Center for Advanced Research in Finance and Banking - CARFIB.
- Axel A. Araneda, 2019. "The fractional and mixed-fractional CEV model," Papers 1903.05747, arXiv.org, revised Jun 2019.
- Jean-Philippe Aguilar & Jan Korbel & Yuri Luchko, 2019. "Applications of the Fractional Diffusion Equation to Option Pricing and Risk Calculations," Mathematics, MDPI, vol. 7(9), pages 1-23, September.
- Xiao, Wei-Lin & Zhang, Wei-Guo & Zhang, Xi-Li & Wang, Ying-Luo, 2010. "Pricing currency options in a fractional Brownian motion with jumps," Economic Modelling, Elsevier, vol. 27(5), pages 935-942, September.
- Rostek, S. & Schöbel, R., 2013. "A note on the use of fractional Brownian motion for financial modeling," Economic Modelling, Elsevier, vol. 30(C), pages 30-35.
- Axel A. Araneda, 2021. "Price modelling under generalized fractional Brownian motion," Papers 2108.12042, arXiv.org, revised Nov 2023.
- Panhong Cheng & Zhihong Xu & Zexing Dai, 2023. "Valuation of vulnerable options with stochastic corporate liabilities in a mixed fractional Brownian motion environment," Mathematics and Financial Economics, Springer, volume 17, number 3, February.
- Fajardo, J. & Cajueiro, D. O., 2003. "Volatility Estimation and Option Pricing with Fractional Brownian Motion," Finance Lab Working Papers flwp_53, Finance Lab, Insper Instituto de Ensino e Pesquisa.
- Kyong-Hui Kim & Myong-Guk Sin, 2013. "Efficient hedging in general Black-Scholes model," Papers 1308.6387, arXiv.org, revised Mar 2014.
- Vasile Brătian & Ana-Maria Acu & Camelia Oprean-Stan & Emil Dinga & Gabriela-Mariana Ionescu, 2021. "Efficient or Fractal Market Hypothesis? A Stock Indexes Modelling Using Geometric Brownian Motion and Geometric Fractional Brownian Motion," Mathematics, MDPI, vol. 9(22), pages 1-20, November.