IDEAS home Printed from https://ideas.repec.org/a/ibn/jmrjnl/v11y2019i2p142.html
   My bibliography  Save this article

Solving Black-Schole Equation Using Standard Fractional Brownian Motion

Author

Listed:
  • Didier Alain Njamen Njomen
  • Eric Djeutcha

Abstract

In this paper, we emphasize the Black-Scholes equation using standard fractional Brownian motion BHwith the hurst index H ∈ [0,1]. N. Ciprian (Necula, C. (2002)) and Bright and Angela (Bright, O., Angela, I., & Chukwunezu (2014)) get the same formula for the evaluation of a Call and Put of a fractional European with the different approaches. We propose a formula by adapting the non-fractional Black-Scholes model using a λHfactor to evaluate the european option. The price of the option at time t ∈]0,T[ depends on λH(T − t), and the cost of the action St, but not only from t − T as in the classical model. At the end, we propose the formula giving the implied volatility of sensitivities of the option and indicators of the financial market.

Suggested Citation

  • Didier Alain Njamen Njomen & Eric Djeutcha, 2019. "Solving Black-Schole Equation Using Standard Fractional Brownian Motion," Journal of Mathematics Research, Canadian Center of Science and Education, vol. 11(2), pages 142-157, April.
  • Handle: RePEc:ibn:jmrjnl:v:11:y:2019:i:2:p:142
    as

    Download full text from publisher

    File URL: http://www.ccsenet.org/journal/index.php/jmr/article/download/0/0/38905/39676
    Download Restriction: no

    File URL: http://www.ccsenet.org/journal/index.php/jmr/article/view/0/38905
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Robert J. Elliott & John Van Der Hoek, 2003. "A General Fractional White Noise Theory And Applications To Finance," Mathematical Finance, Wiley Blackwell, vol. 13(2), pages 301-330, April.
    2. Mandelbrot, Benoit B, 1971. "When Can Price Be Arbitraged Efficiently? A Limit to the Validity of the Random Walk and Martingale Models," The Review of Economics and Statistics, MIT Press, vol. 53(3), pages 225-236, August.
    3. Rosanna Coviello & Cristina Di Girolami & Francesco Russo, 2011. "On stochastic calculus related to financial assets without semimartingales," Papers 1102.2050, arXiv.org.
    4. Cipian Necula, 2008. "Option Pricing in a Fractional Brownian Motion Environment," Advances in Economic and Financial Research - DOFIN Working Paper Series 2, Bucharest University of Economics, Center for Advanced Research in Finance and Banking - CARFIB.
    5. Paolo Guasoni, 2006. "No Arbitrage Under Transaction Costs, With Fractional Brownian Motion And Beyond," Mathematical Finance, Wiley Blackwell, vol. 16(3), pages 569-582, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paula Morales-Bañuelos & Nelson Muriel & Guillermo Fernández-Anaya, 2022. "A Modified Black-Scholes-Merton Model for Option Pricing," Mathematics, MDPI, vol. 10(9), pages 1-16, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stoyan V. Stoyanov & Svetlozar T. Rachev & Stefan Mittnik & Frank J. Fabozzi, 2019. "Pricing Derivatives In Hermite Markets," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(06), pages 1-27, September.
    2. Lahiri, Ananya & Sen, Rituparna, 2020. "Fractional Brownian markets with time-varying volatility and high-frequency data," Econometrics and Statistics, Elsevier, vol. 16(C), pages 91-107.
    3. R. Vilela Mendes & M. J. Oliveira & A. M. Rodrigues, 2012. "The fractional volatility model: No-arbitrage, leverage and completeness," Papers 1205.2866, arXiv.org.
    4. Panhong Cheng & Zhihong Xu & Zexing Dai, 2023. "Valuation of vulnerable options with stochastic corporate liabilities in a mixed fractional Brownian motion environment," Mathematics and Financial Economics, Springer, volume 17, number 3, December.
    5. Calisse, Frank, 2019. "The impact of long-range dependence in the capital stock on interest rate and wealth distribution," VfS Annual Conference 2019 (Leipzig): 30 Years after the Fall of the Berlin Wall - Democracy and Market Economy 203591, Verein für Socialpolitik / German Economic Association.
    6. Wang, Xiao-Tian, 2011. "Scaling and long-range dependence in option pricing V: Multiscaling hedging and implied volatility smiles under the fractional Black–Scholes model with transaction costs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(9), pages 1623-1634.
    7. Azmoodeh Ehsan & Mishura Yuliya & Valkeila Esko, 2009. "On hedging European options in geometric fractional Brownian motion market model," Statistics & Risk Modeling, De Gruyter, vol. 27(02), pages 129-144, December.
    8. Erhan Bayraktar & H. Vincent Poor & K. Ronnie Sircar, 2004. "Estimating The Fractal Dimension Of The S&P 500 Index Using Wavelet Analysis," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 7(05), pages 615-643.
    9. Rostek, Stefan & Schöbel, Rainer, 2006. "Risk preference based option pricing in a fractional Brownian market," Tübinger Diskussionsbeiträge 299, University of Tübingen, School of Business and Economics.
    10. Rostek, S. & Schöbel, R., 2013. "A note on the use of fractional Brownian motion for financial modeling," Economic Modelling, Elsevier, vol. 30(C), pages 30-35.
    11. Dominique, C-Rene & Rivera-Solis, Luis Eduardo & Des Rosiers, Francois, 2010. "Determining The Value-at-risk In The Shadow Of The Power Law: The Case Of The SP-500 Index," MPRA Paper 22604, University Library of Munich, Germany.
    12. Jian Pan & Xiangying Zhou, 2017. "Pricing for options in a mixed fractional Hull–White interest rate model," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 4(01), pages 1-15, March.
    13. Paolo Guasoni & Yuliya Mishura & Miklós Rásonyi, 2021. "High-frequency trading with fractional Brownian motion," Finance and Stochastics, Springer, vol. 25(2), pages 277-310, April.
    14. Yuecai Han & Xudong Zheng, 2022. "Approximate Pricing of Derivatives Under Fractional Stochastic Volatility Model," Papers 2210.15453, arXiv.org.
    15. Xiao, Wei-Lin & Zhang, Wei-Guo & Zhang, Xi-Li & Wang, Ying-Luo, 2010. "Pricing currency options in a fractional Brownian motion with jumps," Economic Modelling, Elsevier, vol. 27(5), pages 935-942, September.
    16. Laurini, Márcio Poletti & Hotta, Luiz Koodi, 2013. "Indirect Inference in fractional short-term interest rate diffusions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 94(C), pages 109-126.
    17. Vilela Mendes, R. & Oliveira, M.J. & Rodrigues, A.M., 2015. "No-arbitrage, leverage and completeness in a fractional volatility model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 470-478.
    18. Stoyan V. Stoyanov & Yong Shin Kim & Svetlozar T. Rachev & Frank J. Fabozzi, 2017. "Option pricing for Informed Traders," Papers 1711.09445, arXiv.org.
    19. Hamza Guennoun & Antoine Jacquier & Patrick Roome & Fangwei Shi, 2014. "Asymptotic behaviour of the fractional Heston model," Papers 1411.7653, arXiv.org, revised Aug 2017.
    20. Zhaoqiang Yang, 2017. "Efficient valuation and exercise boundary of American fractional lookback option in a mixed jump-diffusion model," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 4(02n03), pages 1-29, June.

    More about this item

    Keywords

    stock price; black-Scholes model; fractional Brownian motion; options; volatility;
    All these keywords.

    JEL classification:

    • R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibn:jmrjnl:v:11:y:2019:i:2:p:142. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Canadian Center of Science and Education (email available below). General contact details of provider: https://edirc.repec.org/data/cepflch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.