IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i9p1492-d806322.html
   My bibliography  Save this article

A Modified Black-Scholes-Merton Model for Option Pricing

Author

Listed:
  • Paula Morales-Bañuelos

    (Departamento de Estudios Empresariales, Universidad Iberoamericana Ciudad de México, Mexico City 01219, Mexico)

  • Nelson Muriel

    (Departamento de Física y Matemáticas, Universidad Iberoamericana Ciudad de México, Mexico City 01219, Mexico)

  • Guillermo Fernández-Anaya

    (Departamento de Física y Matemáticas, Universidad Iberoamericana Ciudad de México, Mexico City 01219, Mexico)

Abstract

Financial derivatives have grown in importance over the last 40 years with futures and options being actively traded on a daily basis throughout the world. The need to accurately price such financial instruments has, thus, also increased, which has given rise to several mathematical models among which is that of Black, Scholes, and Merton whose wide acceptance is partly justified by its ability to price derivatives in mature and well-developed markets. For instruments traded in emerging markets, however, the accurateness of the BSM model is unproven and new proposals need be made to face the pricing challenge. In this paper we develop a model, inspired in conformable calculus, providing greater flexibilities for these markets. After developing the theoretical aspects of the model, we present an empirical application.

Suggested Citation

  • Paula Morales-Bañuelos & Nelson Muriel & Guillermo Fernández-Anaya, 2022. "A Modified Black-Scholes-Merton Model for Option Pricing," Mathematics, MDPI, vol. 10(9), pages 1-16, April.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:9:p:1492-:d:806322
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/9/1492/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/9/1492/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 8, pages 229-288, World Scientific Publishing Co. Pte. Ltd..
    2. Mohammed K. A. Kaabar & Francisco Martínez & Inmaculada Martínez & Zailan Siri & Silvestre Paredes & Antonio Di Crescenzo, 2021. "Novel Investigation of Multivariable Conformable Calculus for Modeling Scientific Phenomena," Journal of Mathematics, Hindawi, vol. 2021, pages 1-12, November.
    3. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    4. Cipian Necula, 2008. "Option Pricing in a Fractional Brownian Motion Environment," Advances in Economic and Financial Research - DOFIN Working Paper Series 2, Bucharest University of Economics, Center for Advanced Research in Finance and Banking - CARFIB.
    5. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    6. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    7. Didier Alain Njamen Njomen & Eric Djeutcha, 2019. "Solving Black-Schole Equation Using Standard Fractional Brownian Motion," Journal of Mathematics Research, Canadian Center of Science and Education, vol. 11(2), pages 142-157, April.
    8. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Robert F. Engle & Emil N. Siriwardane, 2018. "Structural GARCH: The Volatility-Leverage Connection," The Review of Financial Studies, Society for Financial Studies, vol. 31(2), pages 449-492.
    2. Duan, Jin-Chuan & Simonato, Jean-Guy, 2001. "American option pricing under GARCH by a Markov chain approximation," Journal of Economic Dynamics and Control, Elsevier, vol. 25(11), pages 1689-1718, November.
    3. Dominique Guegan & Jing Zhang, 2009. "Pricing bivariate option under GARCH-GH model with dynamic copula: application for Chinese market," PSE-Ecole d'économie de Paris (Postprint) halshs-00368336, HAL.
    4. Zhu, Ke & Ling, Shiqing, 2015. "Model-based pricing for financial derivatives," Journal of Econometrics, Elsevier, vol. 187(2), pages 447-457.
    5. Dominique Guegan & Jing Zang, 2009. "Pricing bivariate option under GARCH-GH model with dynamic copula: application for Chinese market," The European Journal of Finance, Taylor & Francis Journals, vol. 15(7-8), pages 777-795.
    6. Giulia Di Nunno & Kk{e}stutis Kubilius & Yuliya Mishura & Anton Yurchenko-Tytarenko, 2023. "From constant to rough: A survey of continuous volatility modeling," Papers 2309.01033, arXiv.org, revised Sep 2023.
    7. Borkowski, Bolesław & Krawiec, Monika & Shachmurove, Yochanan, 2013. "Impact of volatility estimation method on theoretical option values," Global Finance Journal, Elsevier, vol. 24(2), pages 119-128.
    8. Diether Beuermann & Antonios Antoniou & Alejandro Bernales, 2005. "The Dynamics of the Short-Term Interest Rate in the UK," Finance 0512029, University Library of Munich, Germany.
    9. Boleslaw Borkowski & Monika Krawiec & Yochanan Shachmurove, 2013. "Modeling and Estimating Volatility of Options on Standard & Poor’s 500 Index," PIER Working Paper Archive 13-015, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    10. Giovanni Bonaccolto & Massimiliano Caporin, 2016. "The Determinants of Equity Risk and Their Forecasting Implications: A Quantile Regression Perspective," JRFM, MDPI, vol. 9(3), pages 1-25, July.
    11. Péter Farkas, 2013. "Counting Process Generated by Boundary-crossing Events. Theory and Statistical Applications," CEU Working Papers 2013_4, Department of Economics, Central European University.
    12. Pierdzioch, Christian, 2000. "The Effectiveness of the FX Market Interventions of the Bundesbank During the Louvre Period: An Options-Based Analysis," Kiel Working Papers 971, Kiel Institute for the World Economy (IfW Kiel).
    13. Robert Ślepaczuk & Grzegorz Zakrzewski, 2009. "High-Frequency and Model-Free Volatility Estimators," Working Papers 2009-13, Faculty of Economic Sciences, University of Warsaw.
    14. Giacomo Bormetti & Sofia Cazzaniga, 2014. "Multiplicative noise, fast convolution and pricing," Quantitative Finance, Taylor & Francis Journals, vol. 14(3), pages 481-494, March.
    15. Yueh-Neng Lin & Ken Hung, 2008. "Is Volatility Priced?," Annals of Economics and Finance, Society for AEF, vol. 9(1), pages 39-75, May.
    16. Yuan-Hung Hsuku, 2007. "Dynamic consumption and asset allocation with derivative securities," Quantitative Finance, Taylor & Francis Journals, vol. 7(2), pages 137-149.
    17. Alexander Subbotin & Thierry Chauveau & Kateryna Shapovalova, 2009. "Volatility Models: from GARCH to Multi-Horizon Cascades," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00390636, HAL.
    18. H. Fink & S. Geissel & J. Sass & F. T. Seifried, 2019. "Implied risk aversion: an alternative rating system for retail structured products," Review of Derivatives Research, Springer, vol. 22(3), pages 357-387, October.
    19. Matthias R. Fengler & Alexander Melnikov, 2018. "GARCH option pricing models with Meixner innovations," Review of Derivatives Research, Springer, vol. 21(3), pages 277-305, October.
    20. Ballestra, Luca Vincenzo & D’Innocenzo, Enzo & Guizzardi, Andrea, 2024. "A new bivariate approach for modeling the interaction between stock volatility and interest rate: An application to S&P500 returns and options," European Journal of Operational Research, Elsevier, vol. 314(3), pages 1185-1194.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:9:p:1492-:d:806322. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.