IDEAS home Printed from https://ideas.repec.org/r/bla/jorssc/v39y1990i3p357-365.html
   My bibliography  Save this item

A Look at Some Data on the Old Faithful Geyser

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Hyndman, R.J. & Yao, Q., 1998. "Nonparametric Estimation and Symmetry Tests for Conditional Density Functions," Monash Econometrics and Business Statistics Working Papers 17/98, Monash University, Department of Econometrics and Business Statistics.
  2. Gramacki, Artur & Gramacki, Jarosław, 2017. "FFT-based fast bandwidth selector for multivariate kernel density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 106(C), pages 27-45.
  3. Donatella Vicari & Johan Ren� van Dorp, 2013. "On a bounded bimodal two-sided distribution fitted to the Old-Faithful geyser data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 40(9), pages 1965-1978, September.
  4. Navarrete, Carlos A. & Quintana, Fernando A., 2011. "Similarity analysis in Bayesian random partition models," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 97-109, January.
  5. Browne, Ryan P., 2022. "Revitalizing the multivariate elliptical leptokurtic-normal distribution and its application in model-based clustering," Statistics & Probability Letters, Elsevier, vol. 190(C).
  6. repec:cte:wsrepe:ws1450804 is not listed on IDEAS
  7. Chainarong Amornbunchornvej & Elena Zheleva & Tanya Berger-Wolf, 2020. "Variable-lag Granger Causality and Transfer Entropy for Time Series Analysis," Papers 2002.00208, arXiv.org, revised Jun 2020.
  8. Jimmy Reyes & Jaime Arrué & Víctor Leiva & Carlos Martin-Barreiro, 2021. "A New Birnbaum–Saunders Distribution and Its Mathematical Features Applied to Bimodal Real-World Data from Environment and Medicine," Mathematics, MDPI, vol. 9(16), pages 1-19, August.
  9. Adrian O’Hagan & Thomas Brendan Murphy & Luca Scrucca & Isobel Claire Gormley, 2019. "Investigation of parameter uncertainty in clustering using a Gaussian mixture model via jackknife, bootstrap and weighted likelihood bootstrap," Computational Statistics, Springer, vol. 34(4), pages 1779-1813, December.
  10. Iain L. MacDonald, 2021. "Is EM really necessary here? Examples where it seems simpler not to use EM," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 105(4), pages 629-647, December.
  11. Fred Huffer & Cheolyong Park, 2000. "A test for multivariate structure," Journal of Applied Statistics, Taylor & Francis Journals, vol. 27(5), pages 633-650.
  12. Jernigan, Robert W. & Baran, Robert H., 2003. "Testing lumpability in Markov chains," Statistics & Probability Letters, Elsevier, vol. 64(1), pages 17-23, August.
  13. Bose, Arup & Dutta, Santanu, 2013. "Density estimation using bootstrap bandwidth selector," Statistics & Probability Letters, Elsevier, vol. 83(1), pages 245-256.
  14. Yana Melnykov & Xuwen Zhu & Volodymyr Melnykov, 2021. "Transformation mixture modeling for skewed data groups with heavy tails and scatter," Computational Statistics, Springer, vol. 36(1), pages 61-78, March.
  15. Zeileis, Achim & Hornik, Kurt & Murrell, Paul, 2009. "Escaping RGBland: Selecting colors for statistical graphics," Computational Statistics & Data Analysis, Elsevier, vol. 53(9), pages 3259-3270, July.
  16. Eilers, Paul H.C. & Borgdorff, M.W., 2007. "Non-parametric log-concave mixtures," Computational Statistics & Data Analysis, Elsevier, vol. 51(11), pages 5444-5451, July.
  17. Thiago G. Ramires & Luiz R. Nakamura & Ana J. Righetto & Andréa C. Konrath & Carlos A. B. Pereira, 2021. "Incorporating Clustering Techniques into GAMLSS," Stats, MDPI, vol. 4(4), pages 1-15, November.
  18. Roberta Paroli & Luigi Spezia, 2002. "Parameter estimation of Gaussian hidden Markov models when missing observations occur," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(3-4), pages 163-179.
  19. Hirukawa, Masayuki, 2010. "Nonparametric multiplicative bias correction for kernel-type density estimation on the unit interval," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 473-495, February.
  20. Mark S. Handcock & Adrian E. Raftery & Jeremy M. Tantrum, 2007. "Model‐based clustering for social networks," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 170(2), pages 301-354, March.
  21. Xuwen Zhu, 2019. "Probability of misclassification in model-based clustering," Computational Statistics, Springer, vol. 34(3), pages 1427-1442, September.
  22. Juxia Xiao & Xu Li & Jianhong Shi, 2019. "Local linear smoothers using inverse Gaussian regression," Statistical Papers, Springer, vol. 60(4), pages 1225-1253, August.
  23. Hennig, Christian, 2003. "Clusters, outliers, and regression: fixed point clusters," Journal of Multivariate Analysis, Elsevier, vol. 86(1), pages 183-212, July.
  24. Domma, Filippo & Condino, Francesca, 2014. "A new class of distribution functions for lifetime data," Reliability Engineering and System Safety, Elsevier, vol. 129(C), pages 36-45.
  25. Bashtannyk, David M. & Hyndman, Rob J., 2001. "Bandwidth selection for kernel conditional density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 36(3), pages 279-298, May.
  26. Obereder, Andreas & Scherzer, Otmar & Kovac, Arne, 2007. "Bivariate density estimation using BV regularisation," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 5622-5634, August.
  27. José E. Chacón, 2020. "The Modal Age of Statistics," International Statistical Review, International Statistical Institute, vol. 88(1), pages 122-141, April.
  28. Álvarez, Adolfo, 2013. "Recombining partitions via unimodality tests," DES - Working Papers. Statistics and Econometrics. WS ws130706, Universidad Carlos III de Madrid. Departamento de Estadística.
  29. R. N. Rattihalli & S. B. Patil, 2021. "Data Dependent Asymmetric Kernels for Estimating the Density Function," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 155-186, February.
  30. Matthew Heiner & Athanasios Kottas, 2022. "Autoregressive density modeling with the Gaussian process mixture transition distribution," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(2), pages 157-177, March.
  31. Andrea Cerioli & Marco Riani & Anthony C. Atkinson & Aldo Corbellini, 2018. "The power of monitoring: how to make the most of a contaminated multivariate sample," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(4), pages 559-587, December.
  32. Scott, David W., 2004. "Multivariate Density Estimation and Visualization," Papers 2004,16, Humboldt University of Berlin, Center for Applied Statistics and Economics (CASE).
  33. Álvarez, Adolfo, 2009. "Recombining dependent data: an Order Statistics," DES - Working Papers. Statistics and Econometrics. WS ws098526, Universidad Carlos III de Madrid. Departamento de Estadística.
  34. José E. Chacón, 2019. "Mixture model modal clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(2), pages 379-404, June.
  35. Atkinson, A.C. & Riani, M., 2007. "Exploratory tools for clustering multivariate data," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 272-285, September.
  36. Branislav Panić & Marko Nagode & Jernej Klemenc & Simon Oman, 2022. "On Methods for Merging Mixture Model Components Suitable for Unsupervised Image Segmentation Tasks," Mathematics, MDPI, vol. 10(22), pages 1-22, November.
  37. O’Hagan, Adrian & Murphy, Thomas Brendan & Gormley, Isobel Claire & McNicholas, Paul D. & Karlis, Dimitris, 2016. "Clustering with the multivariate normal inverse Gaussian distribution," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 18-30.
  38. Álvarez, Adolfo, 2014. "Recombining partitions from multivariate data: a clustering method on Bayes factors," DES - Working Papers. Statistics and Econometrics. WS ws140804, Universidad Carlos III de Madrid. Departamento de Estadística.
  39. Roel Verbelen & Katrien Antonio & Gerda Claeskens, 2016. "Multivariate mixtures of Erlangs for density estimation under censoring," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 22(3), pages 429-455, July.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.