IDEAS home Printed from https://ideas.repec.org/r/bla/jorssc/v31y1982i3p300-303.html
   My bibliography  Save this item

A Note on the Use of Principal Components in Regression

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Agnese Maria Di Brisco & Enea Giuseppe Bongiorno & Aldo Goia & Sonia Migliorati, 2023. "Bayesian flexible beta regression model with functional covariate," Computational Statistics, Springer, vol. 38(2), pages 623-645, June.
  2. Sergio Camiz & Valério D. Pillar, 2018. "Identifying the Informational/Signal Dimension in Principal Component Analysis," Mathematics, MDPI, vol. 6(11), pages 1-16, November.
  3. Bittencourt, Manoel & Gupta, Rangan & Stander, Lardo, 2014. "Tax evasion, financial development and inflation: Theory and empirical evidence," Journal of Banking & Finance, Elsevier, vol. 41(C), pages 194-208.
  4. Dennis Shen & Peng Ding & Jasjeet Sekhon & Bin Yu, 2022. "Same Root Different Leaves: Time Series and Cross-Sectional Methods in Panel Data," Papers 2207.14481, arXiv.org, revised Oct 2022.
  5. J. O. Bauer & B. Drabant, 2021. "Regression based thresholds in principal loading analysis," Papers 2103.06691, arXiv.org, revised Mar 2022.
  6. Sang-Phil Kim & Diwakar Gupta & Ajay Israni & Bertram Kasiske, 2015. "Accept/decline decision module for the liver simulated allocation model," Health Care Management Science, Springer, vol. 18(1), pages 35-57, March.
  7. Eric Jacobson, 2021. "Who Votes for Library Bonds? A Principal Component Exploration," Papers 2107.01095, arXiv.org.
  8. Arjan J. Frederiks & Sílvia Costa & Boudewijn Hulst & Aard J. Groen, 2024. "The early bird catches the worm: The role of regulatory uncertainty in early adoption of blockchain’s cryptocurrency by fintech ventures," Journal of Small Business Management, Taylor & Francis Journals, vol. 62(2), pages 790-823, March.
  9. Jean Armand Gnagne & Kevin Moran, 2018. "Monitoring Bank Failures in a Data-Rich Environment," Cahiers de recherche 1815, Centre de recherche sur les risques, les enjeux économiques, et les politiques publiques.
  10. Carlos Moreno-Miranda & Hipatia Palacios & Daniele Rama, 2019. "Small-holders perception of sustainability and chain coordination: evidence from Arriba PDO Cocoa in Western Ecuador," Bio-based and Applied Economics Journal, Italian Association of Agricultural and Applied Economics (AIEAA), vol. 8(3), December.
  11. Minjung Kyung & Ju-Hyun Park & Ji Yeh Choi, 2022. "Bayesian Mixture Model of Extended Redundancy Analysis," Psychometrika, Springer;The Psychometric Society, vol. 87(3), pages 946-966, September.
  12. Sandip Garai & Ranjit Kumar Paul & Debopam Rakshit & Md Yeasin & Walid Emam & Yusra Tashkandy & Christophe Chesneau, 2023. "Wavelets in Combination with Stochastic and Machine Learning Models to Predict Agricultural Prices," Mathematics, MDPI, vol. 11(13), pages 1-18, June.
  13. Hugh L. Christensen, 2015. "Algorithmic arbitrage of open-end funds using variational Bayes," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 2(04), pages 1-38, December.
  14. Travaglini, Guido, 2011. "Principal Components and Factor Analysis. A Comparative Study," MPRA Paper 35486, University Library of Munich, Germany.
  15. Jiaju Miao & Pawel Polak, 2023. "Online Ensemble of Models for Optimal Predictive Performance with Applications to Sector Rotation Strategy," Papers 2304.09947, arXiv.org.
  16. Mirza Pasic & Halima Hadziahmetovic & Ismira Ahmovic & Mugdim Pasic, 2023. "Principal Component Regression Modeling and Analysis of PM 10 and Meteorological Parameters in Sarajevo with and without Temperature Inversion," Sustainability, MDPI, vol. 15(14), pages 1-22, July.
  17. Elkin Castaño & Santiago Gallón, 2017. "A solution for multicollinearity in stochastic frontier production function models," Lecturas de Economía, Universidad de Antioquia, Departamento de Economía, issue 86, pages 9-23, Enero - J.
  18. Castano, Elkin & Gallon, Santiago, 2016. "A solution for multicollinearity in stochastic frontier production function models," Revista Lecturas de Economía, Universidad de Antioquia, CIE, issue 86, pages 9-23, December.
  19. Alamgir Kabir & Md Jahanur Rahman & Abu Ahmed Shamim & Rolf D W Klemm & Alain B Labrique & Mahbubur Rashid & Parul Christian & Keith P West Jr., 2017. "Identifying maternal and infant factors associated with newborn size in rural Bangladesh by partial least squares (PLS) regression analysis," PLOS ONE, Public Library of Science, vol. 12(12), pages 1-16, December.
  20. Mansouri, Majdi & Hajji, Mansour & Trabelsi, Mohamed & Harkat, Mohamed Faouzi & Al-khazraji, Ayman & Livera, Andreas & Nounou, Hazem & Nounou, Mohamed, 2018. "An effective statistical fault detection technique for grid connected photovoltaic systems based on an improved generalized likelihood ratio test," Energy, Elsevier, vol. 159(C), pages 842-856.
  21. Israel R. Orimoloye & Adeyemi O. Olusola & Johanes A. Belle & Chaitanya B. Pande & Olusola O. Ololade, 2022. "Drought disaster monitoring and land use dynamics: identification of drought drivers using regression-based algorithms," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(2), pages 1085-1106, June.
  22. Ranjith Vijayakumar & Ji Yeh Choi & Eun Hwa Jung, 2022. "A Unified Neural Network Framework for Extended Redundancy Analysis," Psychometrika, Springer;The Psychometric Society, vol. 87(4), pages 1503-1528, December.
  23. Fernandez-Haddad, Zaira & Quiroga, Sonia, 2011. "Adaptation Of Mediterranean Crops To Water Pressure In The Ebro Basin: A Water Efficiency Index," 2011 International Congress, August 30-September 2, 2011, Zurich, Switzerland 114358, European Association of Agricultural Economists.
  24. Jolliffe, Ian, 2022. "A 50-year personal journey through time with principal component analysis," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
  25. Wolff, Stefanie & Madlener, Reinhard, 2018. "Driven by Change: Commercial Drivers’ Acceptance and Perceived Efficiency of Using Light-Duty Electric Vehicles in Germany," FCN Working Papers 11/2018, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
  26. Cai, Yuezhou & Hanley, Aoife, 2012. "Building BRICS: 2-Stage DEA analysis of R&D efficiency," Kiel Working Papers 1788, Kiel Institute for the World Economy (IfW Kiel).
  27. Mineaki Ohishi & Hirokazu Yanagihara & Shuichi Kawano, 2020. "Equivalence between adaptive Lasso and generalized ridge estimators in linear regression with orthogonal explanatory variables after optimizing regularization parameters," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(6), pages 1501-1516, December.
  28. Luis A. Barboza & Julien Emile-Geay & Bo Li & Wan He, 2019. "Efficient Reconstructions of Common Era Climate via Integrated Nested Laplace Approximations," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(3), pages 535-554, September.
  29. Travaglini, Guido, 2010. "Supervised Principal Components and Factor Instrumental Variables. An Application to Violent CrimeTrends in the US, 1982-2005," MPRA Paper 22077, University Library of Munich, Germany.
  30. Yu Yu & Nita Umashankar & Vithala R. Rao, 2016. "Choosing the right target: Relative preferences for resource similarity and complementarity in acquisition choice," Strategic Management Journal, Wiley Blackwell, vol. 37(8), pages 1808-1825, August.
  31. Mishra, Aditya & Dey, Dipak K. & Chen, Yong & Chen, Kun, 2021. "Generalized co-sparse factor regression," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
  32. Anish Agarwal & Keegan Harris & Justin Whitehouse & Zhiwei Steven Wu, 2023. "Adaptive Principal Component Regression with Applications to Panel Data," Papers 2307.01357, arXiv.org, revised Aug 2024.
  33. Lansangan, Joseph Ryan G. & Barrios, Erniel B., 2017. "Simultaneous dimension reduction and variable selection in modeling high dimensional data," Computational Statistics & Data Analysis, Elsevier, vol. 112(C), pages 242-256.
  34. Tanin Sirimongkolkasem & Reza Drikvandi, 2019. "On Regularisation Methods for Analysis of High Dimensional Data," Annals of Data Science, Springer, vol. 6(4), pages 737-763, December.
  35. Julia Lackmann & Jürgen Ernstberger & Michael Stich, 2012. "Market Reactions to Increased Reliability of Sustainability Information," Journal of Business Ethics, Springer, vol. 107(2), pages 111-128, May.
  36. Paweł Teisseyre & Robert A. Kłopotek & Jan Mielniczuk, 2016. "Random Subspace Method for high-dimensional regression with the R package regRSM," Computational Statistics, Springer, vol. 31(3), pages 943-972, September.
  37. Sondes Gharsellaoui & Majdi Mansouri & Shady S. Refaat & Haitham Abu-Rub & Hassani Messaoud, 2020. "Multivariate Features Extraction and Effective Decision Making Using Machine Learning Approaches," Energies, MDPI, vol. 13(3), pages 1-16, January.
  38. Binner, J.M. & Tino, P. & Tepper, J. & Anderson, R. & Jones, B. & Kendall, G., 2010. "Does money matter in inflation forecasting?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(21), pages 4793-4808.
  39. Ryuta Tamura & Ken Kobayashi & Yuichi Takano & Ryuhei Miyashiro & Kazuhide Nakata & Tomomi Matsui, 2019. "Mixed integer quadratic optimization formulations for eliminating multicollinearity based on variance inflation factor," Journal of Global Optimization, Springer, vol. 73(2), pages 431-446, February.
  40. Kawano, Shuichi & Fujisawa, Hironori & Takada, Toyoyuki & Shiroishi, Toshihiko, 2015. "Sparse principal component regression with adaptive loading," Computational Statistics & Data Analysis, Elsevier, vol. 89(C), pages 192-203.
  41. Dunja Perić & Gyuhyeong Goh & Javad Saeidaskari & Arash Saeidi Rashk Olia & Pooyan Ayar, 2022. "Development of Prediction Models for Performance of Flexible Pavements in Kansas with Emphasis on the Effects of Subgrade and Unbound Layers," Sustainability, MDPI, vol. 14(15), pages 1-21, July.
  42. Santiago Velásquez & Juho Kanniainen & Saku Mäkinen & Jaakko Valli, 2018. "Layoff announcements and intra-day market reactions," Review of Managerial Science, Springer, vol. 12(1), pages 203-228, January.
  43. Anish Agarwal & Devavrat Shah & Dennis Shen, 2020. "Synthetic Interventions," Papers 2006.07691, arXiv.org, revised Aug 2024.
  44. Maurizio Carpita & Paola Pasca & Serena Arima & Enrico Ciavolino, 2023. "Clustering of variables methods and measurement models for soccer players’ performances," Annals of Operations Research, Springer, vol. 325(1), pages 37-56, June.
  45. Shuichi Kawano, 2021. "Sparse principal component regression via singular value decomposition approach," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(3), pages 795-823, September.
  46. Smimou, K., 2014. "Consumer attitudes, stock market liquidity, and the macro economy: A Canadian perspective," International Review of Financial Analysis, Elsevier, vol. 33(C), pages 186-209.
  47. Heni Masruroh & Soemarno Soemarno & Syahrul Kurniawan & Amin Setyo Leksono, 2023. "A Spatial Model of Landslides with A Micro-Topography and Vegetation Approach for Sustainable Land Management in the Volcanic Area," Sustainability, MDPI, vol. 15(4), pages 1-26, February.
  48. Akhatova, A. & Derkenbaeva, E. & van Leeuwen, E. & Kranzl, L. & Halleck Vega, S. & Hofstede, G.J., 2024. "Who invests in energy retrofits? Mining Dutch homeowners’ data," Energy Policy, Elsevier, vol. 189(C).
  49. D Lin & D Banjevic & A K S Jardine, 2006. "Using principal components in a proportional hazards model with applications in condition-based maintenance," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(8), pages 910-919, August.
  50. Kawano, Shuichi & Fujisawa, Hironori & Takada, Toyoyuki & Shiroishi, Toshihiko, 2018. "Sparse principal component regression for generalized linear models," Computational Statistics & Data Analysis, Elsevier, vol. 124(C), pages 180-196.
  51. Luigi Augugliaro & Angelo M. Mineo & Ernst C. Wit, 2013. "Differential geometric least angle regression: a differential geometric approach to sparse generalized linear models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(3), pages 471-498, June.
  52. Anshul Verma & Riccardo Junior Buonocore & Tiziana di Matteo, 2017. "A cluster driven log-volatility factor model: a deepening on the source of the volatility clustering," Papers 1712.02138, arXiv.org, revised May 2018.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.