IDEAS home Printed from https://ideas.repec.org/a/spr/psycho/v87y2022i4d10.1007_s11336-022-09853-x.html
   My bibliography  Save this article

A Unified Neural Network Framework for Extended Redundancy Analysis

Author

Listed:
  • Ranjith Vijayakumar

    (National University of Singapore)

  • Ji Yeh Choi

    (York University)

  • Eun Hwa Jung

    (Kookmin University)

Abstract

Component-based approaches have been regarded as a tool for dimension reduction to predict outcomes from observed variables in regression applications. Extended redundancy analysis (ERA) is one such component-based approach which reduces predictors to components explaining maximum variance in the outcome variables. In many instances, ERA can be extended to capture nonlinearity and interactions between observed and components, but only by specifying a priori functional form. Meanwhile, machine learning methods like neural networks are typically used in a data-driven manner to capture nonlinearity without specifying the exact functional form. In this paper, we introduce a new method that integrates neural networks algorithms into the framework of ERA, called NN-ERA, to capture any non-specified nonlinear relationships among multiple sets of observed variables for constructing components. Simulations and empirical datasets are used to demonstrate the usefulness of NN-ERA. The conclusion is that in social science datasets with unstructured data, where we expect nonlinear relationships that cannot be specified a priori, NN-ERA with its neural network algorithmic structure can serve as a useful tool to specify and test models otherwise not captured by the conventional component-based models.

Suggested Citation

  • Ranjith Vijayakumar & Ji Yeh Choi & Eun Hwa Jung, 2022. "A Unified Neural Network Framework for Extended Redundancy Analysis," Psychometrika, Springer;The Psychometric Society, vol. 87(4), pages 1503-1528, December.
  • Handle: RePEc:spr:psycho:v:87:y:2022:i:4:d:10.1007_s11336-022-09853-x
    DOI: 10.1007/s11336-022-09853-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11336-022-09853-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11336-022-09853-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ian T. Jolliffe, 1982. "A Note on the Use of Principal Components in Regression," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 31(3), pages 300-303, November.
    2. Jan Leeuw & Forrest Young & Yoshio Takane, 1976. "Additive structure in qualitative data: An alternating least squares method with optimal scaling features," Psychometrika, Springer;The Psychometric Society, vol. 41(4), pages 471-503, December.
    3. Andreas Klein & Helfried Moosbrugger, 2000. "Maximum likelihood estimation of latent interaction effects with the LMS method," Psychometrika, Springer;The Psychometric Society, vol. 65(4), pages 457-474, December.
    4. Takane, Yoshio & Hwang, Heungsun, 2005. "An extended redundancy analysis and its applications to two practical examples," Computational Statistics & Data Analysis, Elsevier, vol. 49(3), pages 785-808, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Minjung Kyung & Ju-Hyun Park & Ji Yeh Choi, 2022. "Bayesian Mixture Model of Extended Redundancy Analysis," Psychometrika, Springer;The Psychometric Society, vol. 87(3), pages 946-966, September.
    2. Takane, Yoshio, 2016. "My Early Interactions with Jan and Some of His Lost Papers," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 73(i07).
    3. Son K. Lam & Thomas E. DeCarlo & Ashish Sharma, 2019. "Salesperson ambidexterity in customer engagement: do customer base characteristics matter?," Journal of the Academy of Marketing Science, Springer, vol. 47(4), pages 659-680, July.
    4. Kadziński, MiŁosz & Greco, Salvatore & SŁowiński, Roman, 2012. "Extreme ranking analysis in robust ordinal regression," Omega, Elsevier, vol. 40(4), pages 488-501.
    5. Slupphaug, KJell & Mehmetoglu, Mehmet & Mittner, Matthias, 2024. "modsem: An R package for estimating latent interactions and quadratic effects," OSF Preprints h3rpw, Center for Open Science.
    6. Anastasia Stathopoulou & Tommy Kweku Quansah & George Balabanis, 2022. "The Blinding Effects of Team Identification on Sports Corruption: Cross-Cultural Evidence from Sub-Saharan African Countries," Journal of Business Ethics, Springer, vol. 179(2), pages 511-529, August.
    7. Maggioni, Isabella & Sands, Sean & Kachouie, Reza & Tsarenko, Yelena, 2019. "Shopping for well-being: The role of consumer decision-making styles," Journal of Business Research, Elsevier, vol. 105(C), pages 21-32.
    8. Bouncken, Ricarda B. & Ratzmann, Martin & Kraus, Sascha, 2021. "Anti-aging: How innovation is shaped by firm age and mutual knowledge creation in an alliance," Journal of Business Research, Elsevier, vol. 137(C), pages 422-429.
    9. Seon, Youngwoon & Smith-Adcock, Sondra, 2023. "Adolescents’ meaning in life as a resilience factor between bullying victimization and life satisfaction," Children and Youth Services Review, Elsevier, vol. 148(C).
    10. Yihan Huang & Daehwan Kim, 2023. "How Does Service Quality Improve Consumer Loyalty in Sports Fitness Centers? The Moderating Role of Sport Involvement," Sustainability, MDPI, vol. 15(17), pages 1-24, August.
    11. Hugh L. Christensen, 2015. "Algorithmic arbitrage of open-end funds using variational Bayes," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 2(04), pages 1-38, December.
    12. Jiaju Miao & Pawel Polak, 2023. "Online Ensemble of Models for Optimal Predictive Performance with Applications to Sector Rotation Strategy," Papers 2304.09947, arXiv.org.
    13. Mirza Pasic & Halima Hadziahmetovic & Ismira Ahmovic & Mugdim Pasic, 2023. "Principal Component Regression Modeling and Analysis of PM 10 and Meteorological Parameters in Sarajevo with and without Temperature Inversion," Sustainability, MDPI, vol. 15(14), pages 1-22, July.
    14. Ingo S. Seifert & Julia M. Rohrer & Boris Egloff & Stefan C. Schmukle, 2021. "The Development of the Rank-Order Stability of the Big Five across the Life Span," SOEPpapers on Multidisciplinary Panel Data Research 1156, DIW Berlin, The German Socio-Economic Panel (SOEP).
    15. Yajun Wu & Xia Kang, 2021. "A Moderated Mediation Model of Expectancy-Value Interactions, Engagement, and Foreign Language Performance," SAGE Open, , vol. 11(4), pages 21582440211, November.
    16. Antonello D’Ambra & Pietro Amenta & Anna Crisci & Antonio Lucadamo, 2022. "The generalized Taguchi’s statistic: a passenger satisfaction evaluation," METRON, Springer;Sapienza Università di Roma, vol. 80(1), pages 41-60, April.
    17. Graciela Corral de Zubielqui & Noel Lindsay & Wendy Lindsay & Janice Jones, 2019. "Knowledge quality, innovation and firm performance: a study of knowledge transfer in SMEs," Small Business Economics, Springer, vol. 53(1), pages 145-164, June.
    18. van Rosmalen, J.M. & Koning, A.J. & Groenen, P.J.F., 2007. "Optimal Scaling of Interaction Effects in Generalized Linear Models," Econometric Institute Research Papers EI 2007-44, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    19. Eelen, Jiska & Özturan, Peren & Verlegh, Peeter W.J., 2017. "The differential impact of brand loyalty on traditional and online word of mouth: The moderating roles of self-brand connection and the desire to help the brand," International Journal of Research in Marketing, Elsevier, vol. 34(4), pages 872-891.
    20. Elkin Castaño & Santiago Gallón, 2017. "A solution for multicollinearity in stochastic frontier production function models," Lecturas de Economía, Universidad de Antioquia, Departamento de Economía, issue 86, pages 9-23, Enero - J.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:87:y:2022:i:4:d:10.1007_s11336-022-09853-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.