IDEAS home Printed from https://ideas.repec.org/a/pal/jorsoc/v57y2006i8d10.1057_palgrave.jors.2602058.html
   My bibliography  Save this article

Using principal components in a proportional hazards model with applications in condition-based maintenance

Author

Listed:
  • D Lin

    (University of Toronto)

  • D Banjevic

    (University of Toronto)

  • A K S Jardine

    (University of Toronto)

Abstract

This paper proposes the application of a principal components proportional hazards regression model in condition-based maintenance (CBM) optimization. The Cox proportional hazards model with time-dependent covariates is considered. Principal component analysis (PCA) can be applied to covariates (measurements) to reduce the number of variables included in the model, as well as to eliminate possible collinearity between the covariates. The main issues and problems in using the proposed methodology are discussed. PCA is applied to a simulated CBM data set and two real data sets obtained from industry: oil analysis data and vibration data. Reasonable results are obtained.

Suggested Citation

  • D Lin & D Banjevic & A K S Jardine, 2006. "Using principal components in a proportional hazards model with applications in condition-based maintenance," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(8), pages 910-919, August.
  • Handle: RePEc:pal:jorsoc:v:57:y:2006:i:8:d:10.1057_palgrave.jors.2602058
    DOI: 10.1057/palgrave.jors.2602058
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/palgrave.jors.2602058
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/palgrave.jors.2602058?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ian T. Jolliffe, 1982. "A Note on the Use of Principal Components in Regression," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 31(3), pages 300-303, November.
    2. P J Vlok & J L Coetzee & D Banjevic & A K S Jardine & V Makis, 2002. "Optimal component replacement decisions using vibration monitoring and the proportional-hazards model," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 53(2), pages 193-202, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jia, Xiaodong & Jin, Chao & Buzza, Matt & Wang, Wei & Lee, Jay, 2016. "Wind turbine performance degradation assessment based on a novel similarity metric for machine performance curves," Renewable Energy, Elsevier, vol. 99(C), pages 1191-1201.
    2. Pan, Yan & Liang, Bin & Yang, Lei & Liu, Houde & Wu, Tonghai & Wang, Shuo, 2024. "Spatial-temporal modeling of oil condition monitoring: A review," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    3. Peng, Hao & van Houtum, Geert-Jan, 2016. "Joint optimization of condition-based maintenance and production lot-sizing," European Journal of Operational Research, Elsevier, vol. 253(1), pages 94-107.
    4. You, Ming-Yi & Li, Hongguang & Meng, Guang, 2011. "Control-limit preventive maintenance policies for components subject to imperfect preventive maintenance and variable operational conditions," Reliability Engineering and System Safety, Elsevier, vol. 96(5), pages 590-598.
    5. Mohammad Ali Farsi & S. Masood Hosseini, 2019. "Statistical distributions comparison for remaining useful life prediction of components via ANN," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(3), pages 429-436, June.
    6. Dao, Cuong D. & Zuo, Ming J., 2017. "Optimal selective maintenance for multi-state systems in variable loading conditions," Reliability Engineering and System Safety, Elsevier, vol. 166(C), pages 171-180.
    7. Si, Xiao-Sheng & Wang, Wenbin & Hu, Chang-Hua & Zhou, Dong-Hua, 2011. "Remaining useful life estimation - A review on the statistical data driven approaches," European Journal of Operational Research, Elsevier, vol. 213(1), pages 1-14, August.
    8. Zhou, Dengji & Zhang, Huisheng & Weng, Shilie, 2014. "A novel prognostic model of performance degradation trend for power machinery maintenance," Energy, Elsevier, vol. 78(C), pages 740-746.
    9. Braglia, Marcello & Carmignani, Gionata & Frosolini, Marco & Zammori, Francesco, 2012. "Data classification and MTBF prediction with a multivariate analysis approach," Reliability Engineering and System Safety, Elsevier, vol. 97(1), pages 27-35.
    10. Tian, Zhigang & Liao, Haitao, 2011. "Condition based maintenance optimization for multi-component systems using proportional hazards model," Reliability Engineering and System Safety, Elsevier, vol. 96(5), pages 581-589.
    11. Chrianna I Bharat & Kevin Murray & Edward Cripps & Melinda R Hodkiewicz, 2018. "Methods for displaying and calibration of Cox proportional hazards models," Journal of Risk and Reliability, , vol. 232(1), pages 105-115, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dennis Shen & Peng Ding & Jasjeet Sekhon & Bin Yu, 2022. "Same Root Different Leaves: Time Series and Cross-Sectional Methods in Panel Data," Papers 2207.14481, arXiv.org, revised Oct 2022.
    2. Carlos Moreno-Miranda & Hipatia Palacios & Daniele Rama, 2019. "Small-holders perception of sustainability and chain coordination: evidence from Arriba PDO Cocoa in Western Ecuador," Bio-based and Applied Economics Journal, Italian Association of Agricultural and Applied Economics (AIEAA), vol. 8(3), December.
    3. Lin, Yan-Hui & Li, Yan-Fu & Zio, Enrico, 2018. "A comparison between Monte Carlo simulation and finite-volume scheme for reliability assessment of multi-state physics systems," Reliability Engineering and System Safety, Elsevier, vol. 174(C), pages 1-11.
    4. Fernandez-Haddad, Zaira & Quiroga, Sonia, 2011. "Adaptation Of Mediterranean Crops To Water Pressure In The Ebro Basin: A Water Efficiency Index," 2011 International Congress, August 30-September 2, 2011, Zurich, Switzerland 114358, European Association of Agricultural Economists.
    5. Kawano, Shuichi & Fujisawa, Hironori & Takada, Toyoyuki & Shiroishi, Toshihiko, 2015. "Sparse principal component regression with adaptive loading," Computational Statistics & Data Analysis, Elsevier, vol. 89(C), pages 192-203.
    6. Heni Masruroh & Soemarno Soemarno & Syahrul Kurniawan & Amin Setyo Leksono, 2023. "A Spatial Model of Landslides with A Micro-Topography and Vegetation Approach for Sustainable Land Management in the Volcanic Area," Sustainability, MDPI, vol. 15(4), pages 1-26, February.
    7. Lu, Biao & Zhou, Xiaojun, 2017. "Opportunistic preventive maintenance scheduling for serial-parallel multistage manufacturing systems with multiple streams of deterioration," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 116-127.
    8. Minjung Kyung & Ju-Hyun Park & Ji Yeh Choi, 2022. "Bayesian Mixture Model of Extended Redundancy Analysis," Psychometrika, Springer;The Psychometric Society, vol. 87(3), pages 946-966, September.
    9. W Wang, 2011. "Overview of a semi-stochastic filtering approach for residual life estimation with applications in condition based maintenance," Journal of Risk and Reliability, , vol. 225(2), pages 185-197, June.
    10. Hugh L. Christensen, 2015. "Algorithmic arbitrage of open-end funds using variational Bayes," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 2(04), pages 1-38, December.
    11. Jiaju Miao & Pawel Polak, 2023. "Online Ensemble of Models for Optimal Predictive Performance with Applications to Sector Rotation Strategy," Papers 2304.09947, arXiv.org.
    12. Mirza Pasic & Halima Hadziahmetovic & Ismira Ahmovic & Mugdim Pasic, 2023. "Principal Component Regression Modeling and Analysis of PM 10 and Meteorological Parameters in Sarajevo with and without Temperature Inversion," Sustainability, MDPI, vol. 15(14), pages 1-22, July.
    13. Cai, Yuezhou & Hanley, Aoife, 2012. "Building BRICS: 2-Stage DEA analysis of R&D efficiency," Kiel Working Papers 1788, Kiel Institute for the World Economy (IfW Kiel).
    14. Travaglini, Guido, 2010. "Supervised Principal Components and Factor Instrumental Variables. An Application to Violent CrimeTrends in the US, 1982-2005," MPRA Paper 22077, University Library of Munich, Germany.
    15. Tian, Zhigang & Liao, Haitao, 2011. "Condition based maintenance optimization for multi-component systems using proportional hazards model," Reliability Engineering and System Safety, Elsevier, vol. 96(5), pages 581-589.
    16. Chrianna I Bharat & Kevin Murray & Edward Cripps & Melinda R Hodkiewicz, 2018. "Methods for displaying and calibration of Cox proportional hazards models," Journal of Risk and Reliability, , vol. 232(1), pages 105-115, February.
    17. You, Ming-Yi & Li, Hongguang & Meng, Guang, 2011. "Control-limit preventive maintenance policies for components subject to imperfect preventive maintenance and variable operational conditions," Reliability Engineering and System Safety, Elsevier, vol. 96(5), pages 590-598.
    18. Elkin Castaño & Santiago Gallón, 2017. "A solution for multicollinearity in stochastic frontier production function models," Lecturas de Economía, Universidad de Antioquia, Departamento de Economía, issue 86, pages 9-23, Enero - J.
    19. Mansouri, Majdi & Hajji, Mansour & Trabelsi, Mohamed & Harkat, Mohamed Faouzi & Al-khazraji, Ayman & Livera, Andreas & Nounou, Hazem & Nounou, Mohamed, 2018. "An effective statistical fault detection technique for grid connected photovoltaic systems based on an improved generalized likelihood ratio test," Energy, Elsevier, vol. 159(C), pages 842-856.
    20. Ranjith Vijayakumar & Ji Yeh Choi & Eun Hwa Jung, 2022. "A Unified Neural Network Framework for Extended Redundancy Analysis," Psychometrika, Springer;The Psychometric Society, vol. 87(4), pages 1503-1528, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorsoc:v:57:y:2006:i:8:d:10.1057_palgrave.jors.2602058. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.