IDEAS home Printed from https://ideas.repec.org/r/bla/jorssa/v164y2001i1p61-72.html
   My bibliography  Save this item

Prospective time periodic geographical disease surveillance using a scan statistic

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Suparna Das & Jenevieve Opoku & Adam Allston & Michael Kharfen, 2018. "Detecting spatial clusters of HIV and hepatitis coinfections," PLOS ONE, Public Library of Science, vol. 13(9), pages 1-13, September.
  2. Rohit Shenoi & Ned Levine & Marcella Marie Donaruma-Kwoh & Michelle A. Lyn & Jill V. Hunter & Angelo P. Giardino, 2013. "The Spatial Relationship of Child Homicides to Community Resources in a Large Metropolitan Area," SAGE Open, , vol. 3(2), pages 21582440134, April.
  3. Andrea J. Cook & Diane R. Gold & Yi Li, 2007. "Spatial Cluster Detection for Censored Outcome Data," Biometrics, The International Biometric Society, vol. 63(2), pages 540-549, June.
  4. Loecher, Markus & Ropkins, Karl, 2015. "RgoogleMaps and loa: Unleashing R Graphics Power on Map Tiles," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 63(i04).
  5. Sami Ullah & Hanita Daud & Sarat C Dass & Hadi Fanaee-T & Alamgir Khalil, 2018. "An Eigenspace approach for detecting multiple space-time disease clusters: Application to measles hotspots detection in Khyber-Pakhtunkhwa, Pakistan," PLOS ONE, Public Library of Science, vol. 13(6), pages 1-13, June.
  6. Sevvandi Kandanaarachchi & Rob J Hyndman & Kate Smith-Miles, 2020. "Early classification of spatio-temporal events using partial information," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-39, August.
  7. Toshiro Tango & Kunihiko Takahashi & Kazuaki Kohriyama, 2011. "A Space–Time Scan Statistic for Detecting Emerging Outbreaks," Biometrics, The International Biometric Society, vol. 67(1), pages 106-115, March.
  8. Alexandre Rodrigues & Peter J. Diggle, 2012. "Bayesian Estimation and Prediction for Inhomogeneous Spatiotemporal Log-Gaussian Cox Processes Using Low-Rank Models, With Application to Criminal Surveillance," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(497), pages 93-101, March.
  9. Ruth Benson & Jan Rigby & Christopher Brunsdon & Grace Cully & Lay San Too & Ella Arensman, 2022. "Quantitative Methods to Detect Suicide and Self-Harm Clusters: A Systematic Review," IJERPH, MDPI, vol. 19(9), pages 1-13, April.
  10. Miao, Congcong & Chen, Xiang & Zhang, Chuanrong, 2024. "Assessing network-based traffic crash risk using prospective space-time scan statistic method," Journal of Transport Geography, Elsevier, vol. 119(C).
  11. Kunihiko Takahashi & Hideyasu Shimadzu, 2018. "Multiple-cluster detection test for purely temporal disease clustering: Integration of scan statistics and generalized linear models," PLOS ONE, Public Library of Science, vol. 13(11), pages 1-15, November.
  12. Costa, Marcelo Azevedo & Ruiz-Cárdenas, Ramiro & Mineti, Leandro Brioschi & Prates, Marcos Oliveira, 2021. "Dynamic time scan forecasting for multi-step wind speed prediction," Renewable Energy, Elsevier, vol. 177(C), pages 584-595.
  13. Schiöler, Linus, 2009. "Explorative analysis of spatial patterns of influenza incidences in Sweden 1999—2008," Research Reports 2008:5, University of Gothenburg, Statistical Research Unit, School of Business, Economics and Law.
  14. Marianne Frisén, 2014. "Spatial outbreak detection based on inference principles for multivariate surveillance," IISE Transactions, Taylor & Francis Journals, vol. 46(8), pages 759-769, August.
  15. Shixin Wang & Wenjun Li & Yi Zhou & Fuli Yan & Futao Wang & Wenliang Liu, 2015. "Space–time evolution of historical drought hazards in eastern China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(3), pages 2027-2047, July.
  16. Viergutz, Tim & Schulze-Ehlers, Birgit, 2018. "Exploring the Spatiotemporal Dynamics of Cooperative Members' Switching Decisions," International Journal on Food System Dynamics, International Center for Management, Communication, and Research, vol. 9(5), January.
  17. Yi Zhu, 2022. "Can bicycle sharing mitigate vehicle emission in Chinese large cities? Estimation based on mode shift analysis," Transportation, Springer, vol. 49(6), pages 1627-1648, December.
  18. Schiöler, Linus, 2010. "Modelling the spatial patterns of influenza incidence in Sweden," Research Reports 2010:1, University of Gothenburg, Statistical Research Unit, School of Business, Economics and Law.
  19. Linus Schiöler & Marianne Fris�n, 2012. "Multivariate outbreak detection," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(2), pages 223-242, April.
  20. Dong Ding & Axel Gandy & Georg Hahn, 2020. "A simple method for implementing Monte Carlo tests," Computational Statistics, Springer, vol. 35(3), pages 1373-1392, September.
  21. Arif Masrur & Manzhu Yu & Wei Luo & Ashraf Dewan, 2020. "Space-Time Patterns, Change, and Propagation of COVID-19 Risk Relative to the Intervention Scenarios in Bangladesh," IJERPH, MDPI, vol. 17(16), pages 1-22, August.
  22. Mohammad Tabasi & Ali Asghar Alesheikh & Elnaz Babaie & Javad Hatamiafkoueieh, 2022. "Spatiotemporal Surveillance of COVID-19 Based on Epidemiological Features: Evidence from Northeast Iran," Sustainability, MDPI, vol. 14(19), pages 1-15, September.
  23. Silva, Ivair R. & Assunção, Renato M., 2013. "Optimal generalized truncated sequential Monte Carlo test," Journal of Multivariate Analysis, Elsevier, vol. 121(C), pages 33-49.
  24. Thais Paiva & Renato Assunção & Taynãna Simões, 2015. "Prospective space–time surveillance with cumulative surfaces for geographical identification of the emerging cluster," Computational Statistics, Springer, vol. 30(2), pages 419-440, June.
  25. M. R. Martines & R. V. Ferreira & R. H. Toppa & L. M. Assunção & M. R. Desjardins & E. M. Delmelle, 2021. "Detecting space–time clusters of COVID-19 in Brazil: mortality, inequality, socioeconomic vulnerability, and the relative risk of the disease in Brazilian municipalities," Journal of Geographical Systems, Springer, vol. 23(1), pages 7-36, January.
  26. Ibrahim Musa & Hyun Woo Park & Lkhagvadorj Munkhdalai & Keun Ho Ryu, 2018. "Global Research on Syndromic Surveillance from 1993 to 2017: Bibliometric Analysis and Visualization," Sustainability, MDPI, vol. 10(10), pages 1-20, September.
  27. de Lima, Max Sousa & Duczmal, Luiz Henrique, 2014. "Adaptive likelihood ratio approaches for the detection of space–time disease clusters," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 352-370.
  28. Kieran Kalair & Colm Connaughton & Pierfrancesco Alaimo Di Loro, 2021. "A non‐parametric Hawkes process model of primary and secondary accidents on a UK smart motorway," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(1), pages 80-97, January.
  29. Xufeng Fei & Zhaohan Lou & George Christakos & Qingmin Liu & Yanjun Ren & Jiaping Wu, 2016. "A Geographic Analysis about the Spatiotemporal Pattern of Breast Cancer in Hangzhou from 2008 to 2012," PLOS ONE, Public Library of Science, vol. 11(1), pages 1-13, January.
  30. William H. Woodall & J Brooke Marshall & Michael D. Joner Jr & Shannon E Fraker & Abdel‐Salam G Abdel‐Salam, 2008. "On the use and evaluation of prospective scan methods for health‐related surveillance," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 171(1), pages 223-237, January.
  31. Sami Ullah & Hanita Daud & Sarat C. Dass & Hadi Fanaee-T & Husnul Kausarian & Alamgir, 2020. "Space-Time Clustering Characteristics of Tuberculosis in Khyber Pakhtunkhwa Province, Pakistan, 2015–2019," IJERPH, MDPI, vol. 17(4), pages 1-10, February.
  32. Jingnan Zhang & Yicheng Kang & Yang Yang & Peihua Qiu, 2015. "Statistical monitoring of the hand, foot and mouth disease in China," Biometrics, The International Biometric Society, vol. 71(3), pages 841-850, September.
  33. Lan Huang & Martin Kulldorff & David Gregorio, 2007. "A Spatial Scan Statistic for Survival Data," Biometrics, The International Biometric Society, vol. 63(1), pages 109-118, March.
  34. Fuyu Xu & Kate Beard, 2021. "A comparison of prospective space-time scan statistics and spatiotemporal event sequence based clustering for COVID-19 surveillance," PLOS ONE, Public Library of Science, vol. 16(6), pages 1-23, June.
  35. Assuno, Renato & Correa, Thais, 2009. "Surveillance to detect emerging space-time clusters," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 2817-2830, June.
  36. Frisén, Marianne, 2008. "Introduction to financial surveillance," Research Reports 2008:1, University of Gothenburg, Statistical Research Unit, School of Business, Economics and Law.
  37. Viergutz, Tim & Schulze-Ehlers, Birgit, 2016. "The Spatiotemporal Interrelatedness of Farmers’ Switching Decisions," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 235882, Agricultural and Applied Economics Association.
  38. Zhou, Ruoyu & Shu, Lianjie & Su, Yan, 2015. "An adaptive minimum spanning tree test for detecting irregularly-shaped spatial clusters," Computational Statistics & Data Analysis, Elsevier, vol. 89(C), pages 134-146.
  39. Hadeel AlQadi & Majid Bani-Yaghoub & Sindhu Balakumar & Siqi Wu & Alex Francisco, 2021. "Assessment of Retrospective COVID-19 Spatial Clusters with Respect to Demographic Factors: Case Study of Kansas City, Missouri, United States," IJERPH, MDPI, vol. 18(21), pages 1-15, November.
  40. Lianjie Shu & Wei Jiang & Kwok‐Leung Tsui, 2012. "A standardized scan statistic for detecting spatial clusters with estimated parameters," Naval Research Logistics (NRL), John Wiley & Sons, vol. 59(6), pages 397-410, September.
  41. Felipa De Mello-Sampayo, 2022. "Spatial and Temporal Analysis of COVID-19 in the Elderly Living in Residential Care Homes in Portugal," IJERPH, MDPI, vol. 19(10), pages 1-14, May.
  42. Neill, Daniel B., 2009. "Expectation-based scan statistics for monitoring spatial time series data," International Journal of Forecasting, Elsevier, vol. 25(3), pages 498-517, July.
  43. Chih-Chieh Wu & Chien-Hsiun Chen & Sanjay Shete, 2017. "Assessing current temporal and space-time anomalies of disease incidence," PLOS ONE, Public Library of Science, vol. 12(11), pages 1-10, November.
  44. Lyle Fearnley, 2008. "Signals Come and Go: Syndromic Surveillance and Styles of Biosecurity," Environment and Planning A, , vol. 40(7), pages 1615-1632, July.
  45. Chenchen Yang & Han Zhang & Xunhua Li & Zongyi He & Junli Li, 2023. "Analysis of spatial and temporal characteristics of major natural disasters in China from 2008 to 2021 based on mining news database," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(3), pages 1881-1916, September.
  46. Lele Deng & Yajun Han & Jinlong Wang & Haican Liu & Guilian Li & Dayan Wang & Guangxue He, 2023. "Epidemiological Characteristics of Notifiable Respiratory Infectious Diseases in Mainland China from 2010 to 2018," IJERPH, MDPI, vol. 20(5), pages 1-16, February.
  47. Yingqi Zhao & Donglin Zeng & Amy H. Herring & Amy Ising & Anna Waller & David Richardson & Michael R. Kosorok, 2011. "Detecting Disease Outbreaks Using Local Spatiotemporal Methods," Biometrics, The International Biometric Society, vol. 67(4), pages 1508-1517, December.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.