IDEAS home Printed from https://ideas.repec.org/a/wly/navres/v59y2012i6p397-410.html
   My bibliography  Save this article

A standardized scan statistic for detecting spatial clusters with estimated parameters

Author

Listed:
  • Lianjie Shu
  • Wei Jiang
  • Kwok‐Leung Tsui

Abstract

The scan statistic based on likelihood ratios (LRs) have been widely discussed for detecting spatial clusters. When developing the scan statistic, it uses the maximum likelihood estimates of the incidence rates inside and outside candidate clusters to substitute the true values in the LR statistic. However, the parameter estimation has a significant impact on the sensitivity of the scan statistic, which favors the detection of clusters in areas with large population sizes. By presenting the effects of parameter estimation on Kulldorff's scan statistic, we suggest a standardized scan statistic for spatial cluster detection. Compared to the traditional scan statistic, the standardized scan statistic can account for the varying mean and variance of the LR statistic due to inhomogeneous background population sizes. Extensive simulations have been performed to compare the power of the two cluster detection methods with known or/and estimated parameters. The simulation results show that the standardization can help alleviate the effects of parameter estimation and improve the detection of localized clusters. © 2012 Wiley Periodicals, Inc. Naval Research Logistics, 2012

Suggested Citation

  • Lianjie Shu & Wei Jiang & Kwok‐Leung Tsui, 2012. "A standardized scan statistic for detecting spatial clusters with estimated parameters," Naval Research Logistics (NRL), John Wiley & Sons, vol. 59(6), pages 397-410, September.
  • Handle: RePEc:wly:navres:v:59:y:2012:i:6:p:397-410
    DOI: 10.1002/nav.21493
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/nav.21493
    Download Restriction: no

    File URL: https://libkey.io/10.1002/nav.21493?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Julian Besag & James Newell, 1991. "The Detection of Clusters in Rare Diseases," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 154(1), pages 143-155, January.
    2. Kwok-Leung Tsui & Sung Han & Wei Jiang & William Woodall, 2012. "A review and comparison of likelihood-based charting methods," IISE Transactions, Taylor & Francis Journals, vol. 44(9), pages 724-743.
    3. Martin Kulldorff, 2001. "Prospective time periodic geographical disease surveillance using a scan statistic," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 164(1), pages 61-72.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Patricia Alonso Ruiz & Evgeny Spodarev, 2018. "Entropy-based Inhomogeneity Detection in Fiber Materials," Methodology and Computing in Applied Probability, Springer, vol. 20(4), pages 1223-1239, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Ruoyu & Shu, Lianjie & Su, Yan, 2015. "An adaptive minimum spanning tree test for detecting irregularly-shaped spatial clusters," Computational Statistics & Data Analysis, Elsevier, vol. 89(C), pages 134-146.
    2. Kunihiko Takahashi & Hideyasu Shimadzu, 2018. "Multiple-cluster detection test for purely temporal disease clustering: Integration of scan statistics and generalized linear models," PLOS ONE, Public Library of Science, vol. 13(11), pages 1-15, November.
    3. Dong Ding & Axel Gandy & Georg Hahn, 2020. "A simple method for implementing Monte Carlo tests," Computational Statistics, Springer, vol. 35(3), pages 1373-1392, September.
    4. Sami Ullah & Hanita Daud & Sarat C. Dass & Hadi Fanaee-T & Husnul Kausarian & Alamgir, 2020. "Space-Time Clustering Characteristics of Tuberculosis in Khyber Pakhtunkhwa Province, Pakistan, 2015–2019," IJERPH, MDPI, vol. 17(4), pages 1-10, February.
    5. Costa, Marcelo Azevedo & Ruiz-Cárdenas, Ramiro & Mineti, Leandro Brioschi & Prates, Marcos Oliveira, 2021. "Dynamic time scan forecasting for multi-step wind speed prediction," Renewable Energy, Elsevier, vol. 177(C), pages 584-595.
    6. Johnston, Robert J. & Ramachandran, Mahesh & Schultz, Eric T. & Segerson, Kathleen & Besedin, Elena Y., 2011. "Characterizing Spatial Pattern in Ecosystem Service Values when Distance Decay Doesn’t Apply: Choice Experiments and Local Indicators of Spatial Association," 2011 Annual Meeting, July 24-26, 2011, Pittsburgh, Pennsylvania 103374, Agricultural and Applied Economics Association.
    7. Yingqi Zhao & Donglin Zeng & Amy H. Herring & Amy Ising & Anna Waller & David Richardson & Michael R. Kosorok, 2011. "Detecting Disease Outbreaks Using Local Spatiotemporal Methods," Biometrics, The International Biometric Society, vol. 67(4), pages 1508-1517, December.
    8. Linus Schiöler & Marianne Fris�n, 2012. "Multivariate outbreak detection," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(2), pages 223-242, April.
    9. repec:rri:wpaper:200506 is not listed on IDEAS
    10. Hadeel AlQadi & Majid Bani-Yaghoub & Sindhu Balakumar & Siqi Wu & Alex Francisco, 2021. "Assessment of Retrospective COVID-19 Spatial Clusters with Respect to Demographic Factors: Case Study of Kansas City, Missouri, United States," IJERPH, MDPI, vol. 18(21), pages 1-15, November.
    11. Murat Yazici, 2017. "PSpatial Point Pattern Analyses and its Use in Geographical Epidemiology," Biostatistics and Biometrics Open Access Journal, Juniper Publishers Inc., vol. 1(5), pages 99-103, May.
    12. Ibrahim Musa & Hyun Woo Park & Lkhagvadorj Munkhdalai & Keun Ho Ryu, 2018. "Global Research on Syndromic Surveillance from 1993 to 2017: Bibliometric Analysis and Visualization," Sustainability, MDPI, vol. 10(10), pages 1-20, September.
    13. Tomoya Mori & Tony E. Smith, 2014. "A probabilistic modeling approach to the detection of industrial agglomerations," Journal of Economic Geography, Oxford University Press, vol. 14(3), pages 547-588.
    14. Ben Said FOUED, 2015. "Tunisian Coastal Cities Attractiveness And Amenities," Theoretical and Empirical Researches in Urban Management, Research Centre in Public Administration and Public Services, Bucharest, Romania, vol. 10(3), pages 49-70, August.
    15. Frisén, Marianne, 2008. "Introduction to financial surveillance," Research Reports 2008:1, University of Gothenburg, Statistical Research Unit, School of Business, Economics and Law.
    16. Tonglin Zhang & Ge Lin, 2008. "Identification of local clusters for count data: a model-based Moran's I test," Journal of Applied Statistics, Taylor & Francis Journals, vol. 35(3), pages 293-306.
    17. Tomoya Mori & Tony E. Smith, 2009. "A Reconsideration of the NAS Rule from an Industrial Agglomeration Perspective," KIER Working Papers 669, Kyoto University, Institute of Economic Research.
    18. Kristy Buzard & Gerald A. Carlino & Jake Carr & Robert M. Hunt & Tony E. Smith, 2015. "Localized Knowledge Spillovers: Evidence from the Agglomeration of American R&D Labs and Patent Data," Working Papers 15-3, Federal Reserve Bank of Philadelphia.
    19. Jingnan Zhang & Yicheng Kang & Yang Yang & Peihua Qiu, 2015. "Statistical monitoring of the hand, foot and mouth disease in China," Biometrics, The International Biometric Society, vol. 71(3), pages 841-850, September.
    20. Youngho Kim & Morton O’Kelly, 2008. "A bootstrap based space–time surveillance model with an application to crime occurrences," Journal of Geographical Systems, Springer, vol. 10(2), pages 141-165, June.
    21. M. R. Martines & R. V. Ferreira & R. H. Toppa & L. M. Assunção & M. R. Desjardins & E. M. Delmelle, 2021. "Detecting space–time clusters of COVID-19 in Brazil: mortality, inequality, socioeconomic vulnerability, and the relative risk of the disease in Brazilian municipalities," Journal of Geographical Systems, Springer, vol. 23(1), pages 7-36, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:navres:v:59:y:2012:i:6:p:397-410. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6750 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.