My bibliography
Save this item
Model Selection Criteria for Missing-Data Problems Using the EM Algorithm
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Bo Zhang & Zhen Chen & Paul S. Albert, 2012. "Estimating Diagnostic Accuracy of Raters Without a Gold Standard by Exploiting a Group of Experts," Biometrics, The International Biometric Society, vol. 68(4), pages 1294-1302, December.
- Li, Yong & Yu, Jun, 2012.
"Bayesian hypothesis testing in latent variable models,"
Journal of Econometrics, Elsevier, vol. 166(2), pages 237-246.
- Yong Li & Jun Yu, 2011. "Bayesian Hypothesis Testing in Latent Variable Models," Working Papers 11-2011, Singapore Management University, School of Economics.
- Xia, Ye-Mao & Tang, Nian-Sheng & Gou, Jian-Wei, 2016. "Generalized linear latent models for multivariate longitudinal measurements mixed with hidden Markov models," Journal of Multivariate Analysis, Elsevier, vol. 152(C), pages 259-275.
- Bian, Yuan & Yi, Grace Y. & He, Wenqing, 2024. "A unified framework of analyzing missing data and variable selection using regularized likelihood," Computational Statistics & Data Analysis, Elsevier, vol. 194(C).
- Wei, Yuting & Wang, Qihua & Duan, Xiaogang & Qin, Jing, 2021. "Bias-corrected Kullback–Leibler distance criterion based model selection with covariables missing at random," Computational Statistics & Data Analysis, Elsevier, vol. 160(C).
- Wang, Wan-Lun & Castro, Luis M. & Lin, Tsung-I, 2017. "Automated learning of t factor analysis models with complete and incomplete data," Journal of Multivariate Analysis, Elsevier, vol. 161(C), pages 157-171.
- Oh, Sebeom & Ku, Hyejin & Jun, Doobae, 2022. "A comparative analysis of housing prices in different cities using the Black–Scholes and Jump Diffusion models," Finance Research Letters, Elsevier, vol. 46(PA).
- Po-Hsien Huang, 2017. "Asymptotics of AIC, BIC, and RMSEA for Model Selection in Structural Equation Modeling," Psychometrika, Springer;The Psychometric Society, vol. 82(2), pages 407-426, June.
- Adriano Zanin Zambom & Gregory J. Matthews, 2021. "Sure independence screening in the presence of missing data," Statistical Papers, Springer, vol. 62(2), pages 817-845, April.
- Yong Li & Zeng Tao & Jun Yu, "undated".
"Robust Deviance Information Criterion for Latent Variable Models,"
Working Papers
CoFie-04-2012, Singapore Management University, Sim Kee Boon Institute for Financial Economics.
- Yong Li & Tao Zeng & Jun Yu, 2012. "Robust Deviance Information Criterion for Latent Variable Models," Working Papers 30-2012, Singapore Management University, School of Economics.
- Francis K. C. Hui & Samuel Müller & A. H. Welsh, 2017. "Joint Selection in Mixed Models using Regularized PQL," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1323-1333, July.
- Jiming Jiang & Thuan Nguyen & J. Sunil Rao, 2015. "The E-MS Algorithm: Model Selection With Incomplete Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(511), pages 1136-1147, September.
- Zhongqi Liang & Qihua Wang & Yuting Wei, 2022. "Robust model selection with covariables missing at random," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(3), pages 539-557, June.
- Wan-Lun Wang & Tsung-I Lin, 2020. "Automated learning of mixtures of factor analysis models with missing information," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(4), pages 1098-1124, December.
- Christian Aßmann & Marcel Preising, 2020. "Bayesian estimation and model comparison for linear dynamic panel models with missing values," Australian & New Zealand Journal of Statistics, Australian Statistical Publishing Association Inc., vol. 62(4), pages 536-557, December.
- Li, Yong & Yu, Jun & Zeng, Tao, 2020. "Deviance information criterion for latent variable models and misspecified models," Journal of Econometrics, Elsevier, vol. 216(2), pages 450-493.
- Keiji Takai & Kenichi Hayashi, 2023. "Model Selection with Missing Data Embedded in Missing-at-Random Data," Stats, MDPI, vol. 6(2), pages 1-11, April.
- Takeshi Kurosawa & Francis K.C. Hui & A.H. Welsh & Kousuke Shinmura & Nobuoki Eshima, 2020. "On goodness‐of‐fit measures for Poisson regression models," Australian & New Zealand Journal of Statistics, Australian Statistical Publishing Association Inc., vol. 62(3), pages 340-366, September.
- Tang, Niansheng & Xia, Linli & Yan, Xiaodong, 2019. "Feature screening in ultrahigh-dimensional partially linear models with missing responses at random," Computational Statistics & Data Analysis, Elsevier, vol. 133(C), pages 208-227.
- Joseph G. Ibrahim & Hongtu Zhu & Ramon I. Garcia & Ruixin Guo, 2011. "Fixed and Random Effects Selection in Mixed Effects Models," Biometrics, The International Biometric Society, vol. 67(2), pages 495-503, June.
- Weiping Zhang & Feiyue Xie & Jiaxin Tan, 2020. "A robust joint modeling approach for longitudinal data with informative dropouts," Computational Statistics, Springer, vol. 35(4), pages 1759-1783, December.
- Joseph Ibrahim & Geert Molenberghs, 2009. "Rejoinder on: Missing data methods in longitudinal studies: a review," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 18(1), pages 68-75, May.
- Wei, Yuting & Wang, Qihua, 2021. "Cross-validation-based model averaging in linear models with response missing at random," Statistics & Probability Letters, Elsevier, vol. 171(C).
- Michael J. Daniels & Arkendu S. Chatterjee & Chenguang Wang, 2012. "Bayesian Model Selection for Incomplete Data Using the Posterior Predictive Distribution," Biometrics, The International Biometric Society, vol. 68(4), pages 1055-1063, December.
- Dirick, Lore & Claeskens, Gerda & Baesens, Bart, 2015. "An Akaike information criterion for multiple event mixture cure models," European Journal of Operational Research, Elsevier, vol. 241(2), pages 449-457.
- Li, Yong & Yu, Jun & Zeng, Tao, 2018. "Integrated Deviance Information Criterion for Latent Variable Models," Economics and Statistics Working Papers 6-2018, Singapore Management University, School of Economics.
- Ramon I. Garcia & Joseph G. Ibrahim & Hongtu Zhu, 2010. "Variable Selection in the Cox Regression Model with Covariates Missing at Random," Biometrics, The International Biometric Society, vol. 66(1), pages 97-104, March.