IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v198y2024ics016794732400080x.html
   My bibliography  Save this article

Latent event history models for quasi-reaction systems

Author

Listed:
  • Framba, Matteo
  • Vinciotti, Veronica
  • Wit, Ernst C.

Abstract

Various processes, such as cell differentiation and disease spreading, can be modelled as quasi-reaction systems of particles using stochastic differential equations. The existing Local Linear Approximation (LLA) method infers the parameters driving these systems from measurements of particle abundances over time. While dense observations of the process in time should in theory improve parameter estimation, LLA fails in these situations due to numerical instability. Defining a latent event history model of the underlying quasi-reaction system resolves this problem. A computationally efficient Expectation-Maximization algorithm is proposed for parameter estimation, incorporating an extended Kalman filter for evaluating the latent reactions. A simulation study demonstrates the method's performance and highlights the settings where it is particularly advantageous compared to the existing LLA approaches. An illustration of the method applied to the diffusion of COVID-19 in Italy is presented.

Suggested Citation

  • Framba, Matteo & Vinciotti, Veronica & Wit, Ernst C., 2024. "Latent event history models for quasi-reaction systems," Computational Statistics & Data Analysis, Elsevier, vol. 198(C).
  • Handle: RePEc:eee:csdana:v:198:y:2024:i:c:s016794732400080x
    DOI: 10.1016/j.csda.2024.107996
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S016794732400080X
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2024.107996?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. D. Oakes, 1999. "Direct calculation of the information matrix via the EM," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(2), pages 479-482, April.
    2. Ibrahim, Joseph G. & Zhu, Hongtu & Tang, Niansheng, 2008. "Model Selection Criteria for Missing-Data Problems Using the EM Algorithm," Journal of the American Statistical Association, American Statistical Association, vol. 103(484), pages 1648-1658.
    3. R. H. Shumway & D. S. Stoffer, 1982. "An Approach To Time Series Smoothing And Forecasting Using The Em Algorithm," Journal of Time Series Analysis, Wiley Blackwell, vol. 3(4), pages 253-264, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Poncela, Pilar & Ruiz, Esther & Miranda, Karen, 2021. "Factor extraction using Kalman filter and smoothing: This is not just another survey," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1399-1425.
    2. Yong Li & Zeng Tao & Jun Yu, "undated". "Robust Deviance Information Criterion for Latent Variable Models," Working Papers CoFie-04-2012, Singapore Management University, Sim Kee Boon Institute for Financial Economics.
    3. De Blander, Rembert, 2020. "Iterative estimation correcting for error auto-correlation in short panels, applied to lagged dependent variable models," Econometrics and Statistics, Elsevier, vol. 15(C), pages 3-29.
    4. Li, Yong & Yu, Jun & Zeng, Tao, 2020. "Deviance information criterion for latent variable models and misspecified models," Journal of Econometrics, Elsevier, vol. 216(2), pages 450-493.
    5. Mazzocchi, Mario, 2006. "Time patterns in UK demand for alcohol and tobacco: an application of the EM algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 50(9), pages 2191-2205, May.
    6. Tobias Hartl & Roland Jucknewitz, 2022. "Approximate state space modelling of unobserved fractional components," Econometric Reviews, Taylor & Francis Journals, vol. 41(1), pages 75-98, January.
    7. David de Antonio Liedo, 2014. "Nowcasting Belgium," Working Paper Research 256, National Bank of Belgium.
    8. Proietti, Tommaso, 2008. "Estimation of Common Factors under Cross-Sectional and Temporal Aggregation Constraints: Nowcasting Monthly GDP and its Main Components," MPRA Paper 6860, University Library of Munich, Germany.
    9. Matteo Barigozzi & Marc Hallin, 2023. "Dynamic Factor Models: a Genealogy," Papers 2310.17278, arXiv.org, revised Jan 2024.
    10. Zhongqi Liang & Qihua Wang & Yuting Wei, 2022. "Robust model selection with covariables missing at random," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(3), pages 539-557, June.
    11. Alexander Tsyplakov, 2011. "An introduction to state space modeling (in Russian)," Quantile, Quantile, issue 9, pages 1-24, July.
    12. Hindrayanto, Irma & Koopman, Siem Jan & de Winter, Jasper, 2016. "Forecasting and nowcasting economic growth in the euro area using factor models," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1284-1305.
    13. Björn Andersson & Tao Xin, 2021. "Estimation of Latent Regression Item Response Theory Models Using a Second-Order Laplace Approximation," Journal of Educational and Behavioral Statistics, , vol. 46(2), pages 244-265, April.
    14. Fulvio Corsi & Stefano Peluso & Francesco Audrino, 2015. "Missing in Asynchronicity: A Kalman‐em Approach for Multivariate Realized Covariance Estimation," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(3), pages 377-397, April.
    15. Lara Fontanella & Luigi Ippoliti, 2003. "Dynamic models for space-time prediction via Karhunen-Loève expansion," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 12(1), pages 61-78, February.
    16. Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," Working Papers halshs-02262202, HAL.
    17. Tommaso Proietti & Alessandra Luati, 2013. "Maximum likelihood estimation of time series models: the Kalman filter and beyond," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 15, pages 334-362, Edward Elgar Publishing.
    18. Pawel Krolikowski & Kurt Graden Lunsford & Meifeng dup Yang, 2019. "Using Advance Layoff Notices as a Labor Market Indicator," Economic Commentary, Federal Reserve Bank of Cleveland, vol. 2019(21), December.
    19. Korobilis, Dimitris & Koop, Gary, 2018. "Variational Bayes inference in high-dimensional time-varying parameter models," Essex Finance Centre Working Papers 22665, University of Essex, Essex Business School.
    20. Yasutomo Murasawa & Roberto S. Mariano, 2004. "Constructing a Coincident Index of Business Cycles Without Assuming a One-Factor Model," Econometric Society 2004 Far Eastern Meetings 710, Econometric Society.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:198:y:2024:i:c:s016794732400080x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.