My bibliography
Save this item
Bayesian Nonparametric Spatial Modeling With Dirichlet Process Mixing
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Bo Zhou & David E. Moorman & Sam Behseta & Hernando Ombao & Babak Shahbaba, 2016. "A Dynamic Bayesian Model for Characterizing Cross-Neuronal Interactions During Decision-Making," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 459-471, April.
- Kurtis Shuler & Samuel Verbanic & Irene A. Chen & Juhee Lee, 2021. "A Bayesian nonparametric analysis for zero‐inflated multivariate count data with application to microbiome study," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(4), pages 961-979, August.
- Deborah A. Costain, 2009. "Bayesian Partitioning for Modeling and Mapping Spatial Case–Control Data," Biometrics, The International Biometric Society, vol. 65(4), pages 1123-1132, December.
- Kunming Li & Liting Fang, 2024. "Bayesian Estimation of the Semiparametric Spatial Lag Model," Mathematics, MDPI, vol. 12(14), pages 1-19, July.
- Luis E. Nieto-Barajas & Peter Müller & Yuan Ji & Yiling Lu & Gordon B. Mills, 2012. "A Time-Series DDP for Functional Proteomics Profiles," Biometrics, The International Biometric Society, vol. 68(3), pages 859-868, September.
- Mahdi Hosseinpouri & Majid Jafari Khaledi, 2019. "An area-specific stick breaking process for spatial data," Statistical Papers, Springer, vol. 60(1), pages 199-221, February.
- Xu Gao & Babak Shahbaba & Hernando Ombao, 2018. "Modeling Binary Time Series Using Gaussian Processes with Application to Predicting Sleep States," Journal of Classification, Springer;The Classification Society, vol. 35(3), pages 549-579, October.
- Bruno Scarpa & David B. Dunson, 2009. "Bayesian Hierarchical Functional Data Analysis Via Contaminated Informative Priors," Biometrics, The International Biometric Society, vol. 65(3), pages 772-780, September.
- Gutiérrez, Luis & Mena, Ramsés H. & Ruggiero, Matteo, 2016. "A time dependent Bayesian nonparametric model for air quality analysis," Computational Statistics & Data Analysis, Elsevier, vol. 95(C), pages 161-175.
- Kassandra Fronczyk & Athanasios Kottas, 2017. "Risk Assessment for Toxicity Experiments with Discrete and Continuous Outcomes: A Bayesian Nonparametric Approach," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 22(4), pages 585-601, December.
- Abel Rodr�guez & Enrique ter Horst, 2011. "Measuring expectations in options markets: an application to the S&P500 index," Quantitative Finance, Taylor & Francis Journals, vol. 11(9), pages 1393-1405, July.
- Chen, Kunzhi & Shen, Weining & Zhu, Weixuan, 2023. "Covariate dependent Beta-GOS process," Computational Statistics & Data Analysis, Elsevier, vol. 180(C).
- Brian J. Reich & Dipankar Bandyopadhyay & Howard D. Bondell, 2013. "A Nonparametric Spatial Model for Periodontal Data With Nonrandom Missingness," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(503), pages 820-831, September.
- Cai, Bo & Meyer, Renate, 2011. "Bayesian semiparametric modeling of survival data based on mixtures of B-spline distributions," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1260-1272, March.
- Richardson, Robert & Kottas, Athanasios & Sansó, Bruno, 2017. "Flexible integro-difference equation modeling for spatio-temporal data," Computational Statistics & Data Analysis, Elsevier, vol. 109(C), pages 182-198.
- Peter Müeller & Fernando A. Quintana & Garritt Page, 2018. "Nonparametric Bayesian inference in applications," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(2), pages 175-206, June.
- Liang, Shengde & Banerjee, Sudipto & Bushhouse, Sally & Finley, Andrew O. & Carlin, Bradley P., 2008. "Hierarchical multiresolution approaches for dense point-level breast cancer treatment data," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2650-2668, January.
- Peter J. Diggle & Raquel Menezes & Ting‐li Su, 2010. "Geostatistical inference under preferential sampling," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 59(2), pages 191-232, March.
- Athanasios Kottas & Milovan Krnjajić, 2009. "Bayesian Semiparametric Modelling in Quantile Regression," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(2), pages 297-319, June.
- Gregory P. Bopp & Benjamin A. Shaby & Chris E. Forest & Alfonso Mejía, 2020. "Projecting Flood-Inducing Precipitation with a Bayesian Analogue Model," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(2), pages 229-249, June.
- Sonia Petrone & Michele Guindani & Alan E. Gelfand, 2009. "Hybrid Dirichlet mixture models for functional data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(4), pages 755-782, September.
- Pati, Debdeep & Dunson, David B. & Tokdar, Surya T., 2013. "Posterior consistency in conditional distribution estimation," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 456-472.
- Michele Guindani & Wesley O. Johnson, 2018. "More nonparametric Bayesian inference in applications," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(2), pages 239-251, June.
- XuanLong Nguyen & Alan Gelfand, 2014. "Bayesian nonparametric modeling for functional analysis of variance," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(3), pages 495-526, June.
- Xiao Li & Michele Guindani & Chaan S. Ng & Brian P. Hobbs, 2021. "A Bayesian nonparametric model for textural pattern heterogeneity," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(2), pages 459-480, March.
- Michele Guindani & Peter Müller & Song Zhang, 2009. "A Bayesian discovery procedure," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(5), pages 905-925, November.
- Christoph Hellmayr & Alan E. Gelfand, 2021. "A Partition Dirichlet Process Model for Functional Data Analysis," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 30-65, May.
- Bissiri, Pier Giovanni & Cleanthous, Galatia & Emery, Xavier & Nipoti, Bernardo & Porcu, Emilio, 2022. "Nonparametric Bayesian modelling of longitudinally integrated covariance functions on spheres," Computational Statistics & Data Analysis, Elsevier, vol. 176(C).
- Kunming Li & Liting Fang & Tao Lu, 2019. "Bayesian panel smooth transition model with spatial correlation," PLOS ONE, Public Library of Science, vol. 14(3), pages 1-12, March.
- Pai, Jeffrey & Li, Yunxian & Yang, Aijun & Li, Chenxu, 2022. "Earthquake parametric insurance with Bayesian spatial quantile regression," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 1-12.
- Cornwall, Gary J. & Parent, Olivier, 2017. "Embracing heterogeneity: the spatial autoregressive mixture model," Regional Science and Urban Economics, Elsevier, vol. 64(C), pages 148-161.
- Robert M. Dorazio & Bhramar Mukherjee & Li Zhang & Malay Ghosh & Howard L. Jelks & Frank Jordan, 2008. "Modeling Unobserved Sources of Heterogeneity in Animal Abundance Using a Dirichlet Process Prior," Biometrics, The International Biometric Society, vol. 64(2), pages 635-644, June.
- Athanasios Kottas, 2018. "Discussion of paper “nonparametric Bayesian inference in applications” by Peter Müller, Fernando A. Quintana and Garritt L. Page," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(2), pages 219-225, June.
- Abel Rodriguez & Enrique ter Horst, 2008. "Measuring expectations in options markets: An application to the SP500 index," Papers 0901.0033, arXiv.org.
- Hosseini, Fatemeh & Eidsvik, Jo & Mohammadzadeh, Mohsen, 2011. "Approximate Bayesian inference in spatial GLMM with skew normal latent variables," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1791-1806, April.
- Sara Wade & Stephen G. Walker & Sonia Petrone, 2014. "A Predictive Study of Dirichlet Process Mixture Models for Curve Fitting," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(3), pages 580-605, September.
- Xuejun Jiang & Yunxian Li & Aijun Yang & Ruowei Zhou, 2020. "Bayesian semiparametric quantile regression modeling for estimating earthquake fatality risk," Empirical Economics, Springer, vol. 58(5), pages 2085-2103, May.
- Zahra Barzegar & Firoozeh Rivaz, 2020. "A scalable Bayesian nonparametric model for large spatio-temporal data," Computational Statistics, Springer, vol. 35(1), pages 153-173, March.
- González, Jorge & Barrientos, Andrés F. & Quintana, Fernando A., 2015. "Bayesian nonparametric estimation of test equating functions with covariates," Computational Statistics & Data Analysis, Elsevier, vol. 89(C), pages 222-244.
- Michele Guindani & Alan E. Gelfand, 2006. "Smoothness Properties and Gradient Analysis Under Spatial Dirichlet Process Models," Methodology and Computing in Applied Probability, Springer, vol. 8(2), pages 159-189, June.
- Marcus Groß & Ulrich Rendtel & Timo Schmid & Sebastian Schmon & Nikos Tzavidis, 2017. "Estimating the density of ethnic minorities and aged people in Berlin: multivariate kernel density estimation applied to sensitive georeferenced administrative data protected via measurement error," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(1), pages 161-183, January.
- Bhattacharya, Indrabati & Ghosal, Subhashis, 2021. "Bayesian multivariate quantile regression using Dependent Dirichlet Process prior," Journal of Multivariate Analysis, Elsevier, vol. 185(C).
- Congdon, P., 2007. "Bayesian modelling strategies for spatially varying regression coefficients: A multivariate perspective for multiple outcomes," Computational Statistics & Data Analysis, Elsevier, vol. 51(5), pages 2586-2601, February.