IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2405.17237.html
   My bibliography  Save this paper

Mixing it up: Inflation at risk

Author

Listed:
  • Maximilian Schroder

Abstract

Assessing the contribution of various risk factors to future inflation risks was crucial for guiding monetary policy during the recent high inflation period. However, existing methodologies often provide limited insights by focusing solely on specific percentiles of the forecast distribution. In contrast, this paper introduces a comprehensive framework that examines how economic indicators impact the entire forecast distribution of macroeconomic variables, facilitating the decomposition of the overall risk outlook into its underlying drivers. Additionally, the framework allows for the construction of risk measures that align with central bank preferences, serving as valuable summary statistics. Applied to the recent inflation surge, the framework reveals that U.S. inflation risk was primarily influenced by the recovery of the U.S. business cycle and surging commodity prices, partially mitigated by adjustments in monetary policy and credit spreads.

Suggested Citation

  • Maximilian Schroder, 2024. "Mixing it up: Inflation at risk," Papers 2405.17237, arXiv.org, revised May 2024.
  • Handle: RePEc:arx:papers:2405.17237
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2405.17237
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jongrim Ha & M. Ayhan Kose & Franziska Ohnsorge, 2021. "Inflation During the Pandemic: What Happened? What is Next?," Koç University-TUSIAD Economic Research Forum Working Papers 2108, Koc University-TUSIAD Economic Research Forum.
    2. De Iorio, Maria & Muller, Peter & Rosner, Gary L. & MacEachern, Steven N., 2004. "An ANOVA Model for Dependent Random Measures," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 205-215, January.
    3. Villani, Mattias & Kohn, Robert & Giordani, Paolo, 2009. "Regression density estimation using smooth adaptive Gaussian mixtures," Journal of Econometrics, Elsevier, vol. 153(2), pages 155-173, December.
    4. Christiane Baumeister & James D. Hamilton, 2019. "Structural Interpretation of Vector Autoregressions with Incomplete Identification: Revisiting the Role of Oil Supply and Demand Shocks," American Economic Review, American Economic Association, vol. 109(5), pages 1873-1910, May.
    5. Dimitris Korobilis & Kenichi Shimizu, 2022. "Bayesian Approaches to Shrinkage and Sparse Estimation," Foundations and Trends(R) in Econometrics, now publishers, vol. 11(4), pages 230-354, June.
    6. Gelfand, Alan E. & Kottas, Athanasios & MacEachern, Steven N., 2005. "Bayesian Nonparametric Spatial Modeling With Dirichlet Process Mixing," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1021-1035, September.
    7. Jurgen A. Doornik & Henrik Hansen, 2008. "An Omnibus Test for Univariate and Multivariate Normality," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 70(s1), pages 927-939, December.
    8. Gutiérrez, Luis & Mena, Ramsés H. & Ruggiero, Matteo, 2016. "A time dependent Bayesian nonparametric model for air quality analysis," Computational Statistics & Data Analysis, Elsevier, vol. 95(C), pages 161-175.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hong, Yanran & Cao, Shijiao & Xu, Pengfei & Pan, Zhigang, 2024. "Interpreting the effect of global economic risks on crude oil market: A supply-demand perspective," International Review of Financial Analysis, Elsevier, vol. 91(C).
    2. Pati, Debdeep & Dunson, David B. & Tokdar, Surya T., 2013. "Posterior consistency in conditional distribution estimation," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 456-472.
    3. Abel Rodriguez & Enrique ter Horst, 2008. "Measuring expectations in options markets: An application to the SP500 index," Papers 0901.0033, arXiv.org.
    4. Bruno Scarpa & David B. Dunson, 2009. "Bayesian Hierarchical Functional Data Analysis Via Contaminated Informative Priors," Biometrics, The International Biometric Society, vol. 65(3), pages 772-780, September.
    5. Chen, Kunzhi & Shen, Weining & Zhu, Weixuan, 2023. "Covariate dependent Beta-GOS process," Computational Statistics & Data Analysis, Elsevier, vol. 180(C).
    6. Ravazzolo, Francesco & Rossini, Luca, 2023. "Is the Price Cap for Gas Useful? Evidence from European Countries," FEEM Working Papers 338790, Fondazione Eni Enrico Mattei (FEEM).
    7. Shen, Lihua & Zhou, Jianan, 2024. "The role of biodiversity and energy transition in shaping the next techno-economic era," Technological Forecasting and Social Change, Elsevier, vol. 208(C).
    8. Bhattacharya, Indrabati & Ghosal, Subhashis, 2021. "Bayesian multivariate quantile regression using Dependent Dirichlet Process prior," Journal of Multivariate Analysis, Elsevier, vol. 185(C).
    9. Athanasios Kottas & Milovan Krnjajić, 2009. "Bayesian Semiparametric Modelling in Quantile Regression," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(2), pages 297-319, June.
    10. Kassandra Fronczyk & Athanasios Kottas, 2017. "Risk Assessment for Toxicity Experiments with Discrete and Continuous Outcomes: A Bayesian Nonparametric Approach," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 22(4), pages 585-601, December.
    11. Zahra Barzegar & Firoozeh Rivaz, 2020. "A scalable Bayesian nonparametric model for large spatio-temporal data," Computational Statistics, Springer, vol. 35(1), pages 153-173, March.
    12. Norets, Andriy, 2015. "Bayesian regression with nonparametric heteroskedasticity," Journal of Econometrics, Elsevier, vol. 185(2), pages 409-419.
    13. Gutiérrez, Luis & Mena, Ramsés H. & Ruggiero, Matteo, 2016. "A time dependent Bayesian nonparametric model for air quality analysis," Computational Statistics & Data Analysis, Elsevier, vol. 95(C), pages 161-175.
    14. Abel Rodr�guez & Enrique ter Horst, 2011. "Measuring expectations in options markets: an application to the S&P500 index," Quantitative Finance, Taylor & Francis Journals, vol. 11(9), pages 1393-1405, July.
    15. González, Jorge & Barrientos, Andrés F. & Quintana, Fernando A., 2015. "Bayesian nonparametric estimation of test equating functions with covariates," Computational Statistics & Data Analysis, Elsevier, vol. 89(C), pages 222-244.
    16. Norets, Andriy & Pelenis, Justinas, 2012. "Bayesian modeling of joint and conditional distributions," Journal of Econometrics, Elsevier, vol. 168(2), pages 332-346.
    17. Ha, Jongrim & Kose, M. Ayhan & Ohnsorge, Franziska & Yilmazkuday, Hakan, 2023. "Understanding the global drivers of inflation: How important are oil prices?11We would like to thank Xuguang Simon Sheng, Guest Editor, and two anonymous reviewers for their detailed feedback. We also," Energy Economics, Elsevier, vol. 127(PA).
    18. XuanLong Nguyen & Alan Gelfand, 2014. "Bayesian nonparametric modeling for functional analysis of variance," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(3), pages 495-526, June.
    19. Kurtis Shuler & Samuel Verbanic & Irene A. Chen & Juhee Lee, 2021. "A Bayesian nonparametric analysis for zero‐inflated multivariate count data with application to microbiome study," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(4), pages 961-979, August.
    20. Joao Ayres & Constantino Hevia & Juan Pablo Nicolini, 2021. "Real Exchange Rates and Primary Commodity Prices: Mussa Meets Backus-Smith," Working Papers 89, Red Nacional de Investigadores en Economía (RedNIE).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2405.17237. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.