Nonparametric Bayesian modelling of longitudinally integrated covariance functions on spheres
Author
Abstract
Suggested Citation
DOI: 10.1016/j.csda.2022.107555
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Alexandra M. Schmidt & Anthony O'Hagan, 2003. "Bayesian inference for non‐stationary spatial covariance structure via spatial deformations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(3), pages 743-758, August.
- Emilio Porcu & Alfredo Alegria & Reinhard Furrer, 2018. "Modeling Temporally Evolving and Spatially Globally Dependent Data," International Statistical Review, International Statistical Institute, vol. 86(2), pages 344-377, August.
- Nicolas Chopin & J. Rousseau & Brunero Liseo, 2013. "Computational aspects of Bayesian spectral density estimation," Post-Print hal-01026131, HAL.
- E. Porcu & S. Castruccio & A. Alegría & P. Crippa, 2019. "Axially symmetric models for global data: A journey between geostatistics and stochastic generators," Environmetrics, John Wiley & Sons, Ltd., vol. 30(1), February.
- Jason A. Duan & Michele Guindani & Alan E. Gelfand, 2007. "Generalized Spatial Dirichlet Process Models," Biometrika, Biometrika Trust, vol. 94(4), pages 809-825.
- Yanbing Zheng & Jun Zhu & Anindya Roy, 2010. "Nonparametric Bayesian inference for the spectral density function of a random field," Biometrika, Biometrika Trust, vol. 97(1), pages 238-245.
- Gelfand, Alan E. & Kottas, Athanasios & MacEachern, Steven N., 2005. "Bayesian Nonparametric Spatial Modeling With Dirichlet Process Mixing," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1021-1035, September.
- Peter Müeller & Fernando A. Quintana & Garritt Page, 2018. "Nonparametric Bayesian inference in applications," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(2), pages 175-206, June.
- repec:dau:papers:123456789/10785 is not listed on IDEAS
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Chen, Kunzhi & Shen, Weining & Zhu, Weixuan, 2023. "Covariate dependent Beta-GOS process," Computational Statistics & Data Analysis, Elsevier, vol. 180(C).
- Mahdi Hosseinpouri & Majid Jafari Khaledi, 2019. "An area-specific stick breaking process for spatial data," Statistical Papers, Springer, vol. 60(1), pages 199-221, February.
- Zahra Barzegar & Firoozeh Rivaz, 2020. "A scalable Bayesian nonparametric model for large spatio-temporal data," Computational Statistics, Springer, vol. 35(1), pages 153-173, March.
- Bo Zhou & David E. Moorman & Sam Behseta & Hernando Ombao & Babak Shahbaba, 2016. "A Dynamic Bayesian Model for Characterizing Cross-Neuronal Interactions During Decision-Making," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 459-471, April.
- Emilio Porcu & Philip A. White, 2022. "Random fields on the hypertorus: Covariance modeling and applications," Environmetrics, John Wiley & Sons, Ltd., vol. 33(1), February.
- Peter Müeller & Fernando A. Quintana & Garritt Page, 2018. "Nonparametric Bayesian inference in applications," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(2), pages 175-206, June.
- Kurtis Shuler & Samuel Verbanic & Irene A. Chen & Juhee Lee, 2021. "A Bayesian nonparametric analysis for zero‐inflated multivariate count data with application to microbiome study," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(4), pages 961-979, August.
- Cornwall, Gary J. & Parent, Olivier, 2017. "Embracing heterogeneity: the spatial autoregressive mixture model," Regional Science and Urban Economics, Elsevier, vol. 64(C), pages 148-161.
- Bhattacharya, Indrabati & Ghosal, Subhashis, 2021. "Bayesian multivariate quantile regression using Dependent Dirichlet Process prior," Journal of Multivariate Analysis, Elsevier, vol. 185(C).
- Christoph Hellmayr & Alan E. Gelfand, 2021. "A Partition Dirichlet Process Model for Functional Data Analysis," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 30-65, May.
- Michele Guindani & Alan E. Gelfand, 2006. "Smoothness Properties and Gradient Analysis Under Spatial Dirichlet Process Models," Methodology and Computing in Applied Probability, Springer, vol. 8(2), pages 159-189, June.
- Stefano Favaro & Antonio Lijoi & Igor Prünster, 2012. "On the stick–breaking representation of normalized inverse Gaussian priors," DEM Working Papers Series 008, University of Pavia, Department of Economics and Management.
- Marcelo Cunha & Dani Gamerman & Montserrat Fuentes & Marina Paez, 2017. "A non-stationary spatial model for temperature interpolation applied to the state of Rio de Janeiro," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(5), pages 919-939, November.
- Cleanthous, Galatia & Georgiadis, Athanasios G. & Lang, Annika & Porcu, Emilio, 2020. "Regularity, continuity and approximation of isotropic Gaussian random fields on compact two-point homogeneous spaces," Stochastic Processes and their Applications, Elsevier, vol. 130(8), pages 4873-4891.
- Maximilian Schroder, 2024. "Mixing it up: Inflation at risk," Papers 2405.17237, arXiv.org, revised May 2024.
- Andrew Gordon Wilson & David A. Knowles & Zoubin Ghahramani, 2011. "Gaussian Process Regression Networks," Papers 1110.4411, arXiv.org.
- Bruno Scarpa & David B. Dunson, 2014. "Enriched Stick-Breaking Processes for Functional Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(506), pages 647-660, June.
- Alessia Caponera, 2021. "SPHARMA approximations for stationary functional time series on the sphere," Statistical Inference for Stochastic Processes, Springer, vol. 24(3), pages 609-634, October.
- Robert M. Dorazio & Bhramar Mukherjee & Li Zhang & Malay Ghosh & Howard L. Jelks & Frank Jordan, 2008. "Modeling Unobserved Sources of Heterogeneity in Animal Abundance Using a Dirichlet Process Prior," Biometrics, The International Biometric Society, vol. 64(2), pages 635-644, June.
- Bingham, N.H. & Symons, Tasmin L., 2019. "Dimension walks on Sd×R," Statistics & Probability Letters, Elsevier, vol. 147(C), pages 12-17.
More about this item
Keywords
Axial symmetry; Bayesian nonparametrics; Covariance functions; Global processes; Longitudinal integration; Data on spheres;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:176:y:2022:i:c:s0167947322001359. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.