My bibliography
Save this item
Financial Time Series Forecasting with Deep Learning : A Systematic Literature Review: 2005-2019
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Longo, Luigi & Riccaboni, Massimo & Rungi, Armando, 2022.
"A neural network ensemble approach for GDP forecasting,"
Journal of Economic Dynamics and Control, Elsevier, vol. 134(C).
- Luigi Longo & Massimo Riccaboni & Armando Rungi, 2021. "A Neural Network Ensemble Approach for GDP Forecasting," Working Papers 02/2021, IMT School for Advanced Studies Lucca, revised Mar 2021.
- Jia Xu & Longbing Cao, 2023. "Copula Variational LSTM for High-dimensional Cross-market Multivariate Dependence Modeling," Papers 2305.08778, arXiv.org.
- Ahmet Murat Ozbayoglu & Mehmet Ugur Gudelek & Omer Berat Sezer, 2020. "Deep Learning for Financial Applications : A Survey," Papers 2002.05786, arXiv.org.
- Shujian Liao & Jian Chen & Hao Ni, 2021. "Forex Trading Volatility Prediction using Neural Network Models," Papers 2112.01166, arXiv.org, revised Dec 2021.
- Liyang Tang, 2020. "Application of Nonlinear Autoregressive with Exogenous Input (NARX) neural network in macroeconomic forecasting, national goal setting and global competitiveness assessment," Papers 2005.08735, arXiv.org.
- Paolo Andreini & Cosimo Izzo & Giovanni Ricco, 2020.
"Deep Dynamic Factor Models,"
Papers
2007.11887, arXiv.org, revised May 2023.
- Paolo Andreini & Cosimo Izzo & Giovanni Ricco, 2023. "Deep Dynamic Factor Models," Working Papers 2023-08, Center for Research in Economics and Statistics.
- Zhang, Pinyi & Ci, Bicong, 2020. "Deep belief network for gold price forecasting," Resources Policy, Elsevier, vol. 69(C).
- Sarun Kamolthip, 2021.
"Macroeconomic Forecasting with LSTM and Mixed Frequency Time Series Data,"
PIER Discussion Papers
165, Puey Ungphakorn Institute for Economic Research.
- Sarun Kamolthip, 2021. "Macroeconomic forecasting with LSTM and mixed frequency time series data," Papers 2109.13777, arXiv.org.
- Jean Jacques Ohana & Eric Benhamou & David Saltiel & Beatrice Guez, 2021. "Is the Covid equity bubble rational? A machine learning answer," Working Papers hal-03189799, HAL.
- Guangji Tong & Zhiwei Yin, 2022. "Adaptive Trading System of Assets for International Cooperation in Agricultural Finance Based on Neural Network," Computational Economics, Springer;Society for Computational Economics, vol. 59(4), pages 1557-1576, April.
- Krzysztof Drachal & Michał Pawłowski, 2021. "A Review of the Applications of Genetic Algorithms to Forecasting Prices of Commodities," Economies, MDPI, vol. 9(1), pages 1-22, January.
- Xiaodong Zhang & Suhui Liu & Xin Zheng, 2021. "Stock Price Movement Prediction Based on a Deep Factorization Machine and the Attention Mechanism," Mathematics, MDPI, vol. 9(8), pages 1-21, April.
- Liu, Mingxi & Li, Guowen & Li, Jianping & Zhu, Xiaoqian & Yao, Yinhong, 2021. "Forecasting the price of Bitcoin using deep learning," Finance Research Letters, Elsevier, vol. 40(C).
- Grilli, Luca & Santoro, Domenico, 2020. "Generative Adversarial Network for Market Hourly Discrimination," MPRA Paper 99846, University Library of Munich, Germany.
- Rian Dolphin & Barry Smyth & Ruihai Dong, 2022. "Stock Embeddings: Learning Distributed Representations for Financial Assets," Papers 2202.08968, arXiv.org.
- Jiang, Zhe & Zhang, Lin & Zhang, Lingling & Wen, Bo, 2022. "Investor sentiment and machine learning: Predicting the price of China's crude oil futures market," Energy, Elsevier, vol. 247(C).
- Chao Deng & Liang Ma & Taishan Zeng, 2021. "Crude Oil Price Forecast Based on Deep Transfer Learning: Shanghai Crude Oil as an Example," Sustainability, MDPI, vol. 13(24), pages 1-13, December.
- Anika Kanwal & Siva Chandrasekaran, 2022. "2dCNN-BiCuDNNLSTM: Hybrid Deep-Learning-Based Approach for Classification of COVID-19 X-ray Images," Sustainability, MDPI, vol. 14(11), pages 1-19, June.
- Hossein Hassani & Xu Huang & Emmanuel Silva & Mansi Ghodsi, 2020. "Deep Learning and Implementations in Banking," Annals of Data Science, Springer, vol. 7(3), pages 433-446, September.
- Thibaut Théate & Sébastien Mathieu & Damien Ernst, 2020. "An Artificial Intelligence Solution for Electricity Procurement in Forward Markets," Energies, MDPI, vol. 13(23), pages 1-17, December.
- Chatterjee, Joyjit & Dethlefs, Nina, 2021. "Scientometric review of artificial intelligence for operations & maintenance of wind turbines: The past, present and future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
- Xianfei Hui & Baiqing Sun & Indranil SenGupta & Yan Zhou & Hui Jiang, 2022. "Stochastic volatility modeling of high-frequency CSI 300 index and dynamic jump prediction driven by machine learning," Papers 2204.02891, arXiv.org, revised Jan 2023.
- Berthine Nyunga Mpinda & Jules Sadefo-Kamdem & Salomey Osei & Jeremiah Fadugba, 2021. "Accuracies of Model Risks in Finance using Machine Learning," Working Papers hal-03191437, HAL.
- Wang, Sen & Gao, Yi, 2021. "A literature review and citation analyses of air travel demand studies published between 2010 and 2020," Journal of Air Transport Management, Elsevier, vol. 97(C).
- Katsuya Ito & Kentaro Minami & Kentaro Imajo & Kei Nakagawa, 2020. "Trader-Company Method: A Metaheuristic for Interpretable Stock Price Prediction," Papers 2012.10215, arXiv.org.
- Manu Centeno-Telleria & Ekaitz Zulueta & Unai Fernandez-Gamiz & Daniel Teso-Fz-Betoño & Adrián Teso-Fz-Betoño, 2021. "Differential Evolution Optimal Parameters Tuning with Artificial Neural Network," Mathematics, MDPI, vol. 9(4), pages 1-20, February.
- Abdulgani Kahraman & Mehmed Kantardzic & Muhammet Mustafa Kahraman & Muhammed Kotan, 2021. "A Data-Driven Multi-Regime Approach for Predicting Energy Consumption," Energies, MDPI, vol. 14(20), pages 1-17, October.
- Shuo Sun & Rundong Wang & Bo An, 2021. "Reinforcement Learning for Quantitative Trading," Papers 2109.13851, arXiv.org.
- Jungsik Hwang, 2020. "Modeling Financial Time Series using LSTM with Trainable Initial Hidden States," Papers 2007.06848, arXiv.org.
- Daehyeon PARK & Doojin RYU, 2021. "Forecasting Stock Market Dynamics using Bidirectional Long Short-Term Memory," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(2), pages 22-34, June.
- Muhammad Aslam & Jae-Myeong Lee & Mustafa Raed Altaha & Seung-Jae Lee & Sugwon Hong, 2020. "AE-LSTM Based Deep Learning Model for Degradation Rate Influenced Energy Estimation of a PV System," Energies, MDPI, vol. 13(17), pages 1-14, August.
- Fabian Waldow & Matthias Schnaubelt & Christopher Krauss & Thomas Günter Fischer, 2021. "Machine Learning in Futures Markets," JRFM, MDPI, vol. 14(3), pages 1-14, March.
- Lorenzo Menculini & Andrea Marini & Massimiliano Proietti & Alberto Garinei & Alessio Bozza & Cecilia Moretti & Marcello Marconi, 2021. "Comparing Prophet and Deep Learning to ARIMA in Forecasting Wholesale Food Prices," Forecasting, MDPI, vol. 3(3), pages 1-19, September.
- Uribarri, Gonzalo & Mindlin, Gabriel B., 2022. "Dynamical time series embeddings in recurrent neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
- Philippe Goulet Coulombe, 2022. "A Neural Phillips Curve and a Deep Output Gap," Papers 2202.04146, arXiv.org, revised Oct 2024.
- Nestoras Chalkidis & Rahul Savani, 2021. "Trading via Selective Classification," Papers 2110.14914, arXiv.org, revised Oct 2021.
- Firat Melih Yilmaz & Ozer Arabaci, 2021. "Should Deep Learning Models be in High Demand, or Should They Simply be a Very Hot Topic? A Comprehensive Study for Exchange Rate Forecasting," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 217-245, January.
- Longbing Cao, 2021. "AI in Finance: Challenges, Techniques and Opportunities," Papers 2107.09051, arXiv.org.
- Wenyong Zhang & Lingfei Li & Gongqiu Zhang, 2021. "A Two-Step Framework for Arbitrage-Free Prediction of the Implied Volatility Surface," Papers 2106.07177, arXiv.org, revised Jan 2022.
- Qingwen Li & Guangxi Yan & Chengming Yu, 2022. "A Novel Multi-Factor Three-Step Feature Selection and Deep Learning Framework for Regional GDP Prediction: Evidence from China," Sustainability, MDPI, vol. 14(8), pages 1-21, April.
- Cheng Zhang & Nilam Nur Amir Sjarif & Roslina Ibrahim, 2023. "Deep learning models for price forecasting of financial time series: A review of recent advancements: 2020-2022," Papers 2305.04811, arXiv.org, revised Sep 2023.
- Mateusz Buczyński & Marcin Chlebus, 2021. "GARCHNet - Value-at-Risk forecasting with novel approach to GARCH models based on neural networks," Working Papers 2021-08, Faculty of Economic Sciences, University of Warsaw.
- Zheng, Ling & Zhou, Bin & Or, Siu Wing & Cao, Yijia & Wang, Huaizhi & Li, Yong & Chan, Ka Wing, 2021. "Spatio-temporal wind speed prediction of multiple wind farms using capsule network," Renewable Energy, Elsevier, vol. 175(C), pages 718-730.
- Yong Zhang & Hong Lin & Lina Zheng & Xingyu Yang, 2022. "Adaptive online portfolio strategy based on exponential gradient updates," Journal of Combinatorial Optimization, Springer, vol. 43(3), pages 672-696, April.
- Xiao Yang & Weiqing Liu & Dong Zhou & Jiang Bian & Tie-Yan Liu, 2020. "Qlib: An AI-oriented Quantitative Investment Platform," Papers 2009.11189, arXiv.org.
- Liu, Gang & Wang, Kun & Hao, Xiaochen & Zhang, Zhipeng & Zhao, Yantao & Xu, Qingquan, 2022. "SA-LSTMs: A new advance prediction method of energy consumption in cement raw materials grinding system," Energy, Elsevier, vol. 241(C).
- Djoumbissie David Romain, 2020. "Predicting S&P500 Index direction with Transfer Learning and a Causal Graph as main Input," Papers 2011.13113, arXiv.org, revised Apr 2022.