IDEAS home Printed from https://ideas.repec.org/r/arx/papers/1908.02399.html
   My bibliography  Save this item

Estimation of Conditional Average Treatment Effects with High-Dimensional Data

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Riccardo Di Francesco, 2022. "Aggregation Trees," CEIS Research Paper 546, Tor Vergata University, CEIS, revised 20 Nov 2023.
  2. Kyle Colangelo & Ying-Ying Lee, 2020. "Double Debiased Machine Learning Nonparametric Inference with Continuous Treatments," Papers 2004.03036, arXiv.org, revised Sep 2023.
  3. Shi, Pengfei & Zhang, Xinyu & Zhong, Wei, 2024. "Estimating conditional average treatment effects with heteroscedasticity by model averaging and matching," Economics Letters, Elsevier, vol. 238(C).
  4. Phillip Heiler & Michael C. Knaus, 2021. "Effect or Treatment Heterogeneity? Policy Evaluation with Aggregated and Disaggregated Treatments," Papers 2110.01427, arXiv.org, revised Aug 2023.
  5. Kazuhiko Shinoda & Takahiro Hoshino, 2022. "Orthogonal Series Estimation for the Ratio of Conditional Expectation Functions," Papers 2212.13145, arXiv.org.
  6. Michael Zimmert & Michael Lechner, 2019. "Nonparametric estimation of causal heterogeneity under high-dimensional confounding," Papers 1908.08779, arXiv.org.
  7. 'Agoston Reguly, 2021. "Heterogeneous Treatment Effects in Regression Discontinuity Designs," Papers 2106.11640, arXiv.org, revised Oct 2021.
  8. Daniel Jacob, 2019. "Group Average Treatment Effects for Observational Studies," Papers 1911.02688, arXiv.org, revised Mar 2020.
  9. Michael Lechner & Jana Mareckova, 2024. "Comprehensive Causal Machine Learning," Papers 2405.10198, arXiv.org, revised Feb 2025.
  10. Michael C Knaus, 2022. "Double machine learning-based programme evaluation under unconfoundedness [Econometric methods for program evaluation]," The Econometrics Journal, Royal Economic Society, vol. 25(3), pages 602-627.
  11. Ballinari, Daniele, 2024. "Calibrating doubly-robust estimators with unbalanced treatment assignment," Economics Letters, Elsevier, vol. 241(C).
  12. Geonwoo Kim & Suyong Song, 2024. "Double/Debiased CoCoLASSO of Treatment Effects with Mismeasured High-Dimensional Control Variables," Papers 2408.14671, arXiv.org.
  13. Claudia Noack & Tomasz Olma & Christoph Rothe, 2021. "Flexible Covariate Adjustments in Regression Discontinuity Designs," Papers 2107.07942, arXiv.org, revised Dec 2024.
  14. Wei Huang & Oliver Linton & Zheng Zhang, 2022. "A Unified Framework for Specification Tests of Continuous Treatment Effect Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(4), pages 1817-1830, October.
  15. Riccardo Di Francesco, 2024. "Aggregation Trees," Papers 2410.11408, arXiv.org.
  16. Kyle Colangelo & Ying-Ying Lee, 2019. "Double debiased machine learning nonparametric inference with continuous treatments," CeMMAP working papers CWP54/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
  17. Gregory Faletto, 2023. "Fused Extended Two-Way Fixed Effects for Difference-in-Differences With Staggered Adoptions," Papers 2312.05985, arXiv.org, revised Oct 2024.
  18. Arthur Charpentier & Emmanuel Flachaire & Ewen Gallic, 2023. "Optimal Transport for Counterfactual Estimation: A Method for Causal Inference," Papers 2301.07755, arXiv.org.
  19. Adam Baybutt & Manu Navjeevan, 2023. "Doubly-Robust Inference for Conditional Average Treatment Effects with High-Dimensional Controls," Papers 2301.06283, arXiv.org.
  20. Yikun Zhang & Yen-Chi Chen, 2025. "Doubly Robust Inference on Causal Derivative Effects for Continuous Treatments," Papers 2501.06969, arXiv.org.
  21. Julius Owusu, 2024. "A Nonparametric Test of Heterogeneous Treatment Effects under Interference," Papers 2410.00733, arXiv.org.
  22. Masahiro Kato, 2024. "Triple/Debiased Lasso for Statistical Inference of Conditional Average Treatment Effects," Papers 2403.03240, arXiv.org.
  23. Nan Liu & Yanbo Liu & Yuya Sasaki, 2024. "Estimation and Inference for Causal Functions with Multiway Clustered Data," Papers 2409.06654, arXiv.org.
  24. Agboola, Oluwagbenga David & Yu, Han, 2023. "Neighborhood-based cross fitting approach to treatment effects with high-dimensional data," Computational Statistics & Data Analysis, Elsevier, vol. 186(C).
  25. Yang Ning & Sida Peng & Jing Tao, 2020. "Doubly Robust Semiparametric Difference-in-Differences Estimators with High-Dimensional Data," Papers 2009.03151, arXiv.org.
  26. Zimmert, Franziska & Zimmert, Michael, 2020. "Paid parental leave and maternal reemployment: Do part-time subsidies help or harm?," Economics Working Paper Series 2002, University of St. Gallen, School of Economics and Political Science.
  27. Ganesh Karapakula, 2023. "Stable Probability Weighting: Large-Sample and Finite-Sample Estimation and Inference Methods for Heterogeneous Causal Effects of Multivalued Treatments Under Limited Overlap," Papers 2301.05703, arXiv.org, revised Jan 2023.
  28. Lucas Zhang, 2024. "Continuous difference-in-differences with double/debiased machine learning," Papers 2408.10509, arXiv.org.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.