My bibliography
Save this item
A proof that artificial neural networks overcome the curse of dimensionality in the numerical approximation of Black-Scholes partial differential equations
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Xiaofei Shi & Daran Xu & Zhanhao Zhang, 2021. "Deep Learning Algorithms for Hedging with Frictions," Papers 2111.01931, arXiv.org, revised Dec 2022.
- Philipp Grohs & Arnulf Jentzen & Diyora Salimova, 2022. "Deep neural network approximations for solutions of PDEs based on Monte Carlo algorithms," Partial Differential Equations and Applications, Springer, vol. 3(4), pages 1-41, August.
- Aur'elien Alfonsi & Adel Cherchali & Jose Arturo Infante Acevedo, 2020. "Multilevel Monte-Carlo for computing the SCR with the standard formula and other stress tests," Papers 2010.12651, arXiv.org, revised Apr 2021.
- Glau, Kathrin & Wunderlich, Linus, 2022. "The deep parametric PDE method and applications to option pricing," Applied Mathematics and Computation, Elsevier, vol. 432(C).
- Nikolas Nüsken & Lorenz Richter, 2021. "Solving high-dimensional Hamilton–Jacobi–Bellman PDEs using neural networks: perspectives from the theory of controlled diffusions and measures on path space," Partial Differential Equations and Applications, Springer, vol. 2(4), pages 1-48, August.
- Ashley Davey & Harry Zheng, 2020. "Deep Learning for Constrained Utility Maximisation," Papers 2008.11757, arXiv.org, revised Aug 2021.
- Christian Beck & Lukas Gonon & Arnulf Jentzen, 2024. "Overcoming the curse of dimensionality in the numerical approximation of high-dimensional semilinear elliptic partial differential equations," Partial Differential Equations and Applications, Springer, vol. 5(6), pages 1-47, December.
- Aurélien Alfonsi & Bernard Lapeyre & Jérôme Lelong, 2023. "How Many Inner Simulations to Compute Conditional Expectations with Least-square Monte Carlo?," Methodology and Computing in Applied Probability, Springer, vol. 25(3), pages 1-25, September.
- Lukas Gonon, 2022. "Deep neural network expressivity for optimal stopping problems," Papers 2210.10443, arXiv.org.
- Marlon Azinovic & Luca Gaegauf & Simon Scheidegger, 2022. "Deep Equilibrium Nets," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 63(4), pages 1471-1525, November.
- Lukas Gonon, 2024. "Deep neural network expressivity for optimal stopping problems," Finance and Stochastics, Springer, vol. 28(3), pages 865-910, July.
- Alfonsi, Aurélien & Cherchali, Adel & Infante Acevedo, Jose Arturo, 2021. "Multilevel Monte-Carlo for computing the SCR with the standard formula and other stress tests," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 234-260.
- Chen, Yu & Yu, Hui & Liu, Chengjie & Xie, Jin & Han, Jun & Dai, Houde, 2024. "Synergistic fusion of physical modeling and data-driven approaches for parameter inference to enzymatic biodiesel production system," Applied Energy, Elsevier, vol. 373(C).
- Marc Sabate-Vidales & David v{S}iv{s}ka & Lukasz Szpruch, 2020. "Solving path dependent PDEs with LSTM networks and path signatures," Papers 2011.10630, arXiv.org.
- Maximilien Germain & Huyên Pham & Xavier Warin, 2021. "Neural networks-based algorithms for stochastic control and PDEs in finance ," Post-Print hal-03115503, HAL.
- Lukas Gonon & Christoph Schwab, 2021. "Deep ReLU Network Expression Rates for Option Prices in high-dimensional, exponential L\'evy models," Papers 2101.11897, arXiv.org, revised Jul 2021.
- Aur'elien Alfonsi & Bernard Lapeyre & J'er^ome Lelong, 2022. "How many inner simulations to compute conditional expectations with least-square Monte Carlo?," Papers 2209.04153, arXiv.org, revised May 2023.
- Kathrin Glau & Linus Wunderlich, 2020. "The Deep Parametric PDE Method: Application to Option Pricing," Papers 2012.06211, arXiv.org.
- Stefan Kremsner & Alexander Steinicke & Michaela Szolgyenyi, 2020. "A deep neural network algorithm for semilinear elliptic PDEs with applications in insurance mathematics," Papers 2010.15757, arXiv.org, revised Dec 2020.
- Ariel Neufeld & Philipp Schmocker & Sizhou Wu, 2024. "Full error analysis of the random deep splitting method for nonlinear parabolic PDEs and PIDEs," Papers 2405.05192, arXiv.org, revised Jan 2025.
- Lukas Gonon, 2021. "Random feature neural networks learn Black-Scholes type PDEs without curse of dimensionality," Papers 2106.08900, arXiv.org.
- Aurélien Alfonsi & Bernard Lapeyre & Jérôme Lelong, 2023. "How many inner simulations to compute conditional expectations with least-square Monte Carlo?," Post-Print hal-03770051, HAL.
- Stefan Kremsner & Alexander Steinicke & Michaela Szölgyenyi, 2020. "A Deep Neural Network Algorithm for Semilinear Elliptic PDEs with Applications in Insurance Mathematics," Risks, MDPI, vol. 8(4), pages 1-18, December.
- Marc Sabate Vidales & David Siska & Lukasz Szpruch, 2018. "Unbiased deep solvers for linear parametric PDEs," Papers 1810.05094, arXiv.org, revised Jan 2022.
- Ashley Davey & Michael Monoyios & Harry Zheng, 2020. "Duality for optimal consumption with randomly terminating income," Papers 2011.00732, arXiv.org, revised May 2021.
- Ashley Davey & Harry Zheng, 2022. "Deep Learning for Constrained Utility Maximisation," Methodology and Computing in Applied Probability, Springer, vol. 24(2), pages 661-692, June.
- Jorino van Rhijn & Cornelis W. Oosterlee & Lech A. Grzelak & Shuaiqiang Liu, 2021. "Monte Carlo Simulation of SDEs using GANs," Papers 2104.01437, arXiv.org.
- Aurélien Alfonsi & Bernard Lapeyre & Jérôme Lelong, 2022. "How many inner simulations to compute conditional expectations with least-square Monte Carlo?," Working Papers hal-03770051, HAL.