IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2111.01931.html
   My bibliography  Save this paper

Deep Learning Algorithms for Hedging with Frictions

Author

Listed:
  • Xiaofei Shi
  • Daran Xu
  • Zhanhao Zhang

Abstract

This work studies the deep learning-based numerical algorithms for optimal hedging problems in markets with general convex transaction costs on the trading rates, focusing on their scalability of trading time horizon. Based on the comparison results of the FBSDE solver by Han, Jentzen, and E (2018) and the Deep Hedging algorithm by Buehler, Gonon, Teichmann, and Wood (2019), we propose a Stable Transfer Hedging (ST-Hedging) algorithm, to aggregate the convenience of the leading-order approximation formulas and the accuracy of the deep learning-based algorithms. Our ST-Hedging algorithm achieves the same state-of-the-art performance in short and moderately long time horizon as FBSDE solver and Deep Hedging, and generalize well to long time horizon when previous algorithms become suboptimal. With the transfer learning technique, ST-Hedging drastically reduce the training time, and shows great scalability to high-dimensional settings. This opens up new possibilities in model-based deep learning algorithms in economics, finance, and operational research, which takes advantages of the domain expert knowledge and the accuracy of the learning-based methods.

Suggested Citation

  • Xiaofei Shi & Daran Xu & Zhanhao Zhang, 2021. "Deep Learning Algorithms for Hedging with Frictions," Papers 2111.01931, arXiv.org, revised Dec 2022.
  • Handle: RePEc:arx:papers:2111.01931
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2111.01931
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Acharya, Viral V. & Pedersen, Lasse Heje, 2005. "Asset pricing with liquidity risk," Journal of Financial Economics, Elsevier, vol. 77(2), pages 375-410, August.
    2. Paolo Guasoni & Mikl'os R'asonyi, 2015. "Hedging, arbitrage and optimality with superlinear frictions," Papers 1506.05895, arXiv.org.
    3. Amihud, Yakov & Mendelson, Haim & Pedersen, Lasse Heje, 2006. "Liquidity and Asset Prices," Foundations and Trends(R) in Finance, now publishers, vol. 1(4), pages 269-364, February.
    4. Bruno Bouchard & Masaaki Fukasawa & Martin Herdegen & Johannes Muhle-Karbe, 2018. "Equilibrium returns with transaction costs," Finance and Stochastics, Springer, vol. 22(3), pages 569-601, July.
    5. Martin Herdegen & Johannes Muhle-Karbe, 2018. "Stability of Radner equilibria with respect to small frictions," Finance and Stochastics, Springer, vol. 22(2), pages 443-502, April.
    6. Paolo Guasoni & Marko Weber, 2017. "Dynamic Trading Volume," Mathematical Finance, Wiley Blackwell, vol. 27(2), pages 313-349, April.
    7. Philipp Grohs & Fabian Hornung & Arnulf Jentzen & Philippe von Wurstemberger, 2018. "A proof that artificial neural networks overcome the curse of dimensionality in the numerical approximation of Black-Scholes partial differential equations," Papers 1809.02362, arXiv.org, revised Jan 2023.
    8. Fabrizio Lillo & J. Doyne Farmer & Rosario N. Mantegna, 2003. "Master curve for price-impact function," Nature, Nature, vol. 421(6919), pages 129-130, January.
    9. Dylan Possamai & H. Mete Soner & Nizar Touzi, 2012. "Homogenization and asymptotics for small transaction costs: the multidimensional case," Papers 1212.6275, arXiv.org, revised Jan 2013.
    10. Johannes Muhle-Karbe & Xiaofei Shi & Chen Yang, 2020. "An Equilibrium Model for the Cross-Section of Liquidity Premia," Papers 2011.13625, arXiv.org.
    11. Ludovic Moreau & Johannes Muhle-Karbe & H. Mete Soner, 2017. "Trading With Small Price Impact," Mathematical Finance, Wiley Blackwell, vol. 27(2), pages 350-400, April.
    12. Haoran Wang & Xun Yu Zhou, 2020. "Continuous‐time mean–variance portfolio selection: A reinforcement learning framework," Mathematical Finance, Wiley Blackwell, vol. 30(4), pages 1273-1308, October.
    13. Philippe Casgrain & Brian Ning & Sebastian Jaimungal, 2019. "Deep Q-Learning for Nash Equilibria: Nash-DQN," Papers 1904.10554, arXiv.org, revised Oct 2022.
    14. Nicolae Gârleanu & Lasse Heje Pedersen, 2013. "Dynamic Trading with Predictable Returns and Transaction Costs," Journal of Finance, American Finance Association, vol. 68(6), pages 2309-2340, December.
    15. Johannes Ruf & Weiguan Wang, 2020. "Hedging with Linear Regressions and Neural Networks," Papers 2004.08891, arXiv.org, revised Jun 2021.
    16. Martin Herdegen & Johannes Muhle-Karbe & Dylan Possamaï, 2021. "Equilibrium asset pricing with transaction costs," Finance and Stochastics, Springer, vol. 25(2), pages 231-275, April.
    17. Kohlmann, Michael & Tang, Shanjian, 2002. "Global adapted solution of one-dimensional backward stochastic Riccati equations, with application to the mean-variance hedging," Stochastic Processes and their Applications, Elsevier, vol. 97(2), pages 255-288, February.
    18. Paolo Guasoni & Marko Hans Weber, 2020. "Nonlinear price impact and portfolio choice," Mathematical Finance, Wiley Blackwell, vol. 30(2), pages 341-376, April.
    19. Ruf, Johannes & Wang, Weiguan, 2022. "Hedging with linear regressions and neural networks," LSE Research Online Documents on Economics 107811, London School of Economics and Political Science, LSE Library.
    20. Delarue, François, 2002. "On the existence and uniqueness of solutions to FBSDEs in a non-degenerate case," Stochastic Processes and their Applications, Elsevier, vol. 99(2), pages 209-286, June.
    21. Sannikov, Yuliy & Skrzypacz, Andrzej, 2016. "Dynamic Trading: Price Inertia and Front-Running," Research Papers 3487, Stanford University, Graduate School of Business.
    22. Hans Buehler & Lukas Gonon & Josef Teichmann & Ben Wood & Baranidharan Mohan & Jonathan Kochems, 2019. "Deep Hedging: Hedging Derivatives Under Generic Market Frictions Using Reinforcement Learning," Swiss Finance Institute Research Paper Series 19-80, Swiss Finance Institute.
    23. Joachim de Lataillade & Cyril Deremble & Marc Potters & Jean-Philippe Bouchaud, 2012. "Optimal Trading with Linear Costs," Papers 1203.5957, arXiv.org.
    24. Robert Almgren, 2003. "Optimal execution with nonlinear impact functions and trading-enhanced risk," Applied Mathematical Finance, Taylor & Francis Journals, vol. 10(1), pages 1-18.
    25. Gârleanu, Nicolae & Pedersen, Lasse Heje, 2016. "Dynamic portfolio choice with frictions," Journal of Economic Theory, Elsevier, vol. 165(C), pages 487-516.
    26. Jan Kallsen & Johannes Muhle-Karbe, 2017. "The General Structure Of Optimal Investment And Consumption With Small Transaction Costs," Mathematical Finance, Wiley Blackwell, vol. 27(3), pages 659-703, July.
    27. Bruno Bouchard & Masaaki Fukasawa & Martin Herdegen & Johannes Muhle-Karbe, 2017. "Equilibrium Returns with Transaction Costs," Papers 1707.08464, arXiv.org, revised Apr 2018.
    28. Dumas, Bernard & Luciano, Elisa, 1991. "An Exact Solution to a Dynamic Portfolio Choice Problem under Transactions Costs," Journal of Finance, American Finance Association, vol. 46(2), pages 577-595, June.
    29. H. Mete Soner & Nizar Touzi, 2012. "Homogenization and asymptotics for small transaction costs," Papers 1202.6131, arXiv.org, revised Jun 2013.
    30. Jan Kallsen & Shen Li, 2013. "Portfolio Optimization under Small Transaction Costs: a Convex Duality Approach," Papers 1309.3479, arXiv.org.
    31. Bruno Bouchard & Masaaki Fukasawa & Martin Herdegen & Johannes Muhle-Karbe, 2018. "Equilibrium Returns with Transaction Costs," Post-Print hal-01569408, HAL.
    32. Jin Choi & Kasper Larsen, 2015. "Taylor approximation of incomplete Radner equilibrium models," Finance and Stochastics, Springer, vol. 19(3), pages 653-679, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaofei Shi & Daran Xu & Zhanhao Zhang, 2023. "Deep learning algorithms for hedging with frictions," Digital Finance, Springer, vol. 5(1), pages 113-147, March.
    2. Lukas Gonon & Johannes Muhle-Karbe & Xiaofei Shi, 2019. "Asset Pricing with General Transaction Costs: Theory and Numerics," Papers 1905.05027, arXiv.org, revised Apr 2020.
    3. Lukas Gonon & Johannes Muhle‐Karbe & Xiaofei Shi, 2021. "Asset pricing with general transaction costs: Theory and numerics," Mathematical Finance, Wiley Blackwell, vol. 31(2), pages 595-648, April.
    4. Erhan Bayraktar & Thomas Cayé & Ibrahim Ekren, 2021. "Asymptotics for small nonlinear price impact: A PDE approach to the multidimensional case," Mathematical Finance, Wiley Blackwell, vol. 31(1), pages 36-108, January.
    5. Bruno Bouchard & Masaaki Fukasawa & Martin Herdegen & Johannes Muhle-Karbe, 2018. "Equilibrium Returns with Transaction Costs," Post-Print hal-01569408, HAL.
    6. Bruno Bouchard & Masaaki Fukasawa & Martin Herdegen & Johannes Muhle-Karbe, 2018. "Equilibrium returns with transaction costs," Finance and Stochastics, Springer, vol. 22(3), pages 569-601, July.
    7. Alain Bensoussan & Guiyuan Ma & Chi Chung Siu & Sheung Chi Phillip Yam, 2022. "Dynamic mean–variance problem with frictions," Finance and Stochastics, Springer, vol. 26(2), pages 267-300, April.
    8. Johannes Muhle-Karbe & Xiaofei Shi & Chen Yang, 2020. "An Equilibrium Model for the Cross-Section of Liquidity Premia," Papers 2011.13625, arXiv.org.
    9. Martin Herdegen & Johannes Muhle-Karbe & Dylan Possamai, 2019. "Equilibrium Asset Pricing with Transaction Costs," Papers 1901.10989, arXiv.org, revised Sep 2020.
    10. Martin Herdegen & Johannes Muhle-Karbe & Dylan Possamaï, 2021. "Equilibrium asset pricing with transaction costs," Finance and Stochastics, Springer, vol. 25(2), pages 231-275, April.
    11. Martin Herdegen & Johannes Muhle-Karbe, 2018. "Stability of Radner equilibria with respect to small frictions," Finance and Stochastics, Springer, vol. 22(2), pages 443-502, April.
    12. Johannes Muhle-Karbe & Marcel Nutz & Xiaowei Tan, 2019. "Asset Pricing with Heterogeneous Beliefs and Illiquidity," Papers 1905.05730, arXiv.org, revised Mar 2020.
    13. Xiao Chen & Jin Hyuk Choi & Kasper Larsen & Duane J. Seppi, 2023. "Price impact in Nash equilibria," Finance and Stochastics, Springer, vol. 27(2), pages 305-340, April.
    14. Cayé, Thomas & Herdegen, Martin & Muhle-Karbe, Johannes, 2020. "Scaling limits of processes with fast nonlinear mean reversion," Stochastic Processes and their Applications, Elsevier, vol. 130(4), pages 1994-2031.
    15. Johannes Muhle‐Karbe & Marcel Nutz & Xiaowei Tan, 2020. "Asset pricing with heterogeneous beliefs and illiquidity," Mathematical Finance, Wiley Blackwell, vol. 30(4), pages 1392-1421, October.
    16. Xiao Chen & Jin Hyuk Choi & Kasper Larsen & Duane J. Seppi, 2019. "Resolving asset pricing puzzles using price-impact," Papers 1910.02466, arXiv.org, revised Jun 2020.
    17. Ma, Guiyuan & Siu, Chi Chung & Zhu, Song-Ping, 2022. "Portfolio choice with return predictability and small trading frictions," Economic Modelling, Elsevier, vol. 111(C).
    18. Peter Bank & Ibrahim Ekren & Johannes Muhle‐Karbe, 2021. "Liquidity in competitive dealer markets," Mathematical Finance, Wiley Blackwell, vol. 31(3), pages 827-856, July.
    19. Johannes Muhle-Karbe & Max Reppen & H. Mete Soner, 2016. "A Primer on Portfolio Choice with Small Transaction Costs," Papers 1612.01302, arXiv.org, revised May 2017.
    20. Ibrahim Ekren & Johannes Muhle-Karbe, 2017. "Portfolio Choice with Small Temporary and Transient Price Impact," Papers 1705.00672, arXiv.org, revised Apr 2020.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2111.01931. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.