IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2101.11897.html
   My bibliography  Save this paper

Deep ReLU Network Expression Rates for Option Prices in high-dimensional, exponential L\'evy models

Author

Listed:
  • Lukas Gonon
  • Christoph Schwab

Abstract

We study the expression rates of deep neural networks (DNNs for short) for option prices written on baskets of $d$ risky assets, whose log-returns are modelled by a multivariate L\'evy process with general correlation structure of jumps. We establish sufficient conditions on the characteristic triplet of the L\'evy process $X$ that ensure $\varepsilon$ error of DNN expressed option prices with DNNs of size that grows polynomially with respect to $\mathcal{O}(\varepsilon^{-1})$, and with constants implied in $\mathcal{O}(\cdot)$ which grow polynomially with respect $d$, thereby overcoming the curse of dimensionality and justifying the use of DNNs in financial modelling of large baskets in markets with jumps. In addition, we exploit parabolic smoothing of Kolmogorov partial integrodifferential equations for certain multivariate L\'evy processes to present alternative architectures of ReLU DNNs that provide $\varepsilon$ expression error in DNN size $\mathcal{O}(|\log(\varepsilon)|^a)$ with exponent $a \sim d$, however, with constants implied in $\mathcal{O}(\cdot)$ growing exponentially with respect to $d$. Under stronger, dimension-uniform non-degeneracy conditions on the L\'evy symbol, we obtain algebraic expression rates of option prices in exponential L\'evy models which are free from the curse of dimensionality. In this case the ReLU DNN expression rates of prices depend on certain sparsity conditions on the characteristic L\'evy triplet. We indicate several consequences and possible extensions of the present results.

Suggested Citation

  • Lukas Gonon & Christoph Schwab, 2021. "Deep ReLU Network Expression Rates for Option Prices in high-dimensional, exponential L\'evy models," Papers 2101.11897, arXiv.org, revised Jul 2021.
  • Handle: RePEc:arx:papers:2101.11897
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2101.11897
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Damien Lamberton & Mohammed Mikou, 2008. "The critical price for the American put in an exponential Lévy model," Finance and Stochastics, Springer, vol. 12(4), pages 561-581, October.
    2. Philipp Grohs & Fabian Hornung & Arnulf Jentzen & Philippe von Wurstemberger, 2018. "A proof that artificial neural networks overcome the curse of dimensionality in the numerical approximation of Black-Scholes partial differential equations," Papers 1809.02362, arXiv.org, revised Jan 2023.
    3. Ernst Eberlein & Kathrin Glau, 2014. "Variational Solutions of the Pricing PIDEs for European Options in Lévy Models," Applied Mathematical Finance, Taylor & Francis Journals, vol. 21(5), pages 417-450, November.
    4. Kallsen, Jan & Tankov, Peter, 2006. "Characterization of dependence of multidimensional Lévy processes using Lévy copulas," Journal of Multivariate Analysis, Elsevier, vol. 97(7), pages 1551-1572, August.
    5. Kathrin Glau, 2016. "A Feynman–Kac-type formula for Lévy processes with discontinuous killing rates," Finance and Stochastics, Springer, vol. 20(4), pages 1021-1059, October.
    6. Esche, Felix & Schweizer, Martin, 2005. "Minimal entropy preserves the Lévy property: how and why," Stochastic Processes and their Applications, Elsevier, vol. 115(2), pages 299-327, February.
    7. N. Hilber & N. Reich & C. Schwab & C. Winter, 2009. "Numerical methods for Lévy processes," Finance and Stochastics, Springer, vol. 13(4), pages 471-500, September.
    8. Rama Cont & Ekaterina Voltchkova, 2005. "A Finite Difference Scheme for Option Pricing in Jump Diffusion and Exponential Lévy Models," Post-Print halshs-00445645, HAL.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lukas Gonon, 2024. "Deep neural network expressivity for optimal stopping problems," Finance and Stochastics, Springer, vol. 28(3), pages 865-910, July.
    2. Glau, Kathrin & Wunderlich, Linus, 2022. "The deep parametric PDE method and applications to option pricing," Applied Mathematics and Computation, Elsevier, vol. 432(C).
    3. Francesca Biagini & Lukas Gonon & Niklas Walter, 2023. "Approximation Rates for Deep Calibration of (Rough) Stochastic Volatility Models," Papers 2309.14784, arXiv.org.
    4. Fred Espen Benth & Nils Detering & Luca Galimberti, 2022. "Pricing options on flow forwards by neural networks in Hilbert space," Papers 2202.11606, arXiv.org.
    5. Luca Galimberti & Anastasis Kratsios & Giulia Livieri, 2022. "Designing Universal Causal Deep Learning Models: The Case of Infinite-Dimensional Dynamical Systems from Stochastic Analysis," Papers 2210.13300, arXiv.org, revised May 2023.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lukas Gonon & Christoph Schwab, 2021. "Deep ReLU network expression rates for option prices in high-dimensional, exponential Lévy models," Finance and Stochastics, Springer, vol. 25(4), pages 615-657, October.
    2. Kathrin Glau, 2016. "A Feynman–Kac-type formula for Lévy processes with discontinuous killing rates," Finance and Stochastics, Springer, vol. 20(4), pages 1021-1059, October.
    3. Maximilian Ga{ss} & Kathrin Glau, 2016. "A Flexible Galerkin Scheme for Option Pricing in L\'evy Models," Papers 1603.08216, arXiv.org.
    4. Buchmann, Boris & Kaehler, Benjamin & Maller, Ross & Szimayer, Alexander, 2017. "Multivariate subordination using generalised Gamma convolutions with applications to Variance Gamma processes and option pricing," Stochastic Processes and their Applications, Elsevier, vol. 127(7), pages 2208-2242.
    5. N. Hilber & N. Reich & C. Schwab & C. Winter, 2009. "Numerical methods for Lévy processes," Finance and Stochastics, Springer, vol. 13(4), pages 471-500, September.
    6. Kathrin Glau, 2015. "Feynman-Kac formula for L\'evy processes with discontinuous killing rate," Papers 1502.07531, arXiv.org, revised Nov 2015.
    7. Boris Buchmann & Benjamin Kaehler & Ross Maller & Alexander Szimayer, 2015. "Multivariate Subordination using Generalised Gamma Convolutions with Applications to V.G. Processes and Option Pricing," Papers 1502.03901, arXiv.org, revised Oct 2016.
    8. Vladimir Panov, 2017. "Series Representations for Multivariate Time-Changed Lévy Models," Methodology and Computing in Applied Probability, Springer, vol. 19(1), pages 97-119, March.
    9. N. Reich & C. Schwab & C. Winter, 2010. "On Kolmogorov equations for anisotropic multivariate Lévy processes," Finance and Stochastics, Springer, vol. 14(4), pages 527-567, December.
    10. Claudia Klüppelberg & Gabriel Kuhn & Liang Peng, 2008. "Semi‐Parametric Models for the Multivariate Tail Dependence Function – the Asymptotically Dependent Case," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 35(4), pages 701-718, December.
    11. Song-Ping Zhu & Xin-Jiang He, 2018. "A hybrid computational approach for option pricing," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 5(03), pages 1-16, September.
    12. Constantinos Kardaras, 2009. "No‐Free‐Lunch Equivalences For Exponential Lévy Models Under Convex Constraints On Investment," Mathematical Finance, Wiley Blackwell, vol. 19(2), pages 161-187, April.
    13. Ron Tat Lung Chan, 2016. "Adaptive Radial Basis Function Methods for Pricing Options Under Jump-Diffusion Models," Computational Economics, Springer;Society for Computational Economics, vol. 47(4), pages 623-643, April.
    14. Kathrin Glau & Daniel Kressner & Francesco Statti, 2019. "Low-rank tensor approximation for Chebyshev interpolation in parametric option pricing," Papers 1902.04367, arXiv.org.
    15. Till Massing, 2018. "Simulation of Student–Lévy processes using series representations," Computational Statistics, Springer, vol. 33(4), pages 1649-1685, December.
    16. Thorsten Rheinländer & Gallus Steiger, 2010. "Utility Indifference Hedging with Exponential Additive Processes," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 17(2), pages 151-169, June.
    17. Hao Zhou & Duy-Minh Dang, 2024. "Numerical analysis of American option pricing in a two-asset jump-diffusion model," Papers 2410.04745, arXiv.org, revised Oct 2024.
    18. Damien Lamberton & Mohammed Mikou, 2013. "Exercise boundary of the American put near maturity in an exponential Lévy model," Finance and Stochastics, Springer, vol. 17(2), pages 355-394, April.
    19. Karel in 't Hout & Pieter Lamotte, 2022. "Efficient numerical valuation of European options under the two-asset Kou jump-diffusion model," Papers 2207.10060, arXiv.org, revised May 2023.
    20. Riva-Palacio, Alan & Leisen, Fabrizio, 2021. "Compound vectors of subordinators and their associated positive Lévy copulas," Journal of Multivariate Analysis, Elsevier, vol. 183(C).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2101.11897. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.