IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2011.00732.html
   My bibliography  Save this paper

Duality for optimal consumption with randomly terminating income

Author

Listed:
  • Ashley Davey
  • Michael Monoyios
  • Harry Zheng

Abstract

We establish a rigorous duality theory, under No Unbounded Profit with Bounded Risk, for an infinite horizon problem of optimal consumption in the presence of an income stream that can terminate randomly at an exponentially distributed time, independent of the asset prices. We thus close a duality gap encountered by Vellekoop and Davis in a version of this problem in a Black-Scholes market. Many of the classical tenets of duality theory hold, with the notable exception that marginal utility at zero initial wealth is finite. We use as dual variables a class of supermartingale deflators such that deflated wealth plus cumulative deflated consumption in excess of income is a supermartingale. We show that the space of discounted local martingale deflators is dense in our dual domain, so that the dual problem can also be expressed as an infimum over the discounted local martingale deflators. We characterise the optimal wealth process, showing that optimal deflated wealth is a potential decaying to zero, while deflated wealth plus cumulative deflated consumption over income is a uniformly integrable martingale at the optimum. We apply the analysis to the Vellekoop and Davis example and give a numerical solution.

Suggested Citation

  • Ashley Davey & Michael Monoyios & Harry Zheng, 2020. "Duality for optimal consumption with randomly terminating income," Papers 2011.00732, arXiv.org, revised May 2021.
  • Handle: RePEc:arx:papers:2011.00732
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2011.00732
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Julien Hugonnier & Dmitry Kramkov, 2004. "Optimal investment with random endowments in incomplete markets," Papers math/0405293, arXiv.org.
    2. Michael Monoyios, 2020. "Duality for optimal consumption under no unbounded profit with bounded risk," Papers 2006.04687, arXiv.org, revised Dec 2021.
    3. Philipp Grohs & Fabian Hornung & Arnulf Jentzen & Philippe von Wurstemberger, 2018. "A proof that artificial neural networks overcome the curse of dimensionality in the numerical approximation of Black-Scholes partial differential equations," Papers 1809.02362, arXiv.org, revised Jan 2023.
    4. Darrell Duffie & Thaleia Zariphopoulou, 1993. "Optimal Investment With Undiversifiable Income Risk," Mathematical Finance, Wiley Blackwell, vol. 3(2), pages 135-148, April.
    5. He, Hua & Pages, Henri F, 1993. "Labor Income, Borrowing Constraints, and Equilibrium Asset Prices," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 3(4), pages 663-696, October.
    6. Nicole El Karoui & Monique Jeanblanc-Picqué, 1998. "Optimization of consumption with labor income," Finance and Stochastics, Springer, vol. 2(4), pages 409-440.
    7. Ioannis Karatzas & Constantinos Kardaras, 2007. "The numéraire portfolio in semimartingale financial models," Finance and Stochastics, Springer, vol. 11(4), pages 447-493, October.
    8. Föllmer, Hans & Kramkov, D. O., 1997. "Optional decompositions under constraints," SFB 373 Discussion Papers 1997,31, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    9. Oleksii Mostovyi, 2015. "Necessary and sufficient conditions in the problem of optimal investment with intermediate consumption," Finance and Stochastics, Springer, vol. 19(1), pages 135-159, January.
    10. Bian, Baojun & Zheng, Harry, 2015. "Turnpike property and convergence rate for an investment model with general utility functions," Journal of Economic Dynamics and Control, Elsevier, vol. 51(C), pages 28-49.
    11. (**), Hui Wang & Jaksa Cvitanic & (*), Walter Schachermayer, 2001. "Utility maximization in incomplete markets with random endowment," Finance and Stochastics, Springer, vol. 5(2), pages 259-272.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ashley Davey & Michael Monoyios & Harry Zheng, 2021. "Duality for optimal consumption with randomly terminating income," Mathematical Finance, Wiley Blackwell, vol. 31(4), pages 1275-1314, October.
    2. Kamma, Thijs & Pelsser, Antoon, 2022. "Near-optimal asset allocation in financial markets with trading constraints," European Journal of Operational Research, Elsevier, vol. 297(2), pages 766-781.
    3. Gu, Lingqi & Lin, Yiqing & Yang, Junjian, 2016. "On the dual problem of utility maximization in incomplete markets," Stochastic Processes and their Applications, Elsevier, vol. 126(4), pages 1019-1035.
    4. Schwartz, Eduardo S & Tebaldi, Claudio, 2004. "Illiquid Assets and Optimal Portfolio Choice," University of California at Los Angeles, Anderson Graduate School of Management qt7q65t12x, Anderson Graduate School of Management, UCLA.
    5. Michael Monoyios, 2020. "Infinite horizon utility maximisation from inter-temporal wealth," Papers 2009.00972, arXiv.org, revised Oct 2020.
    6. repec:hum:wpaper:sfb649dp2006-063 is not listed on IDEAS
    7. Wittmüß, Wiebke, 2006. "Robust optimization of consumption with random endowment," SFB 649 Discussion Papers 2006-063, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    8. Mnif, Mohammed & Pham, Huyên, 2001. "Stochastic optimization under constraints," Stochastic Processes and their Applications, Elsevier, vol. 93(1), pages 149-180, May.
    9. Christoph Belak & An Chen & Carla Mereu & Robert Stelzer, 2014. "Optimal investment with time-varying stochastic endowments," Papers 1406.6245, arXiv.org, revised Feb 2022.
    10. Wahid Faidi & Hanen Mezghanni & Mohamed Mnif, 2019. "Expected Utility Maximization Problem Under State Constraints and Model Uncertainty," Journal of Optimization Theory and Applications, Springer, vol. 183(3), pages 1123-1152, December.
    11. Nicholas Westray & Harry Zheng, 2010. "Constrained NonSmooth Utility Maximization on the Positive Real Line," Papers 1010.4055, arXiv.org.
    12. Farhi, Emmanuel & Panageas, Stavros, 2007. "Saving and investing for early retirement: A theoretical analysis," Journal of Financial Economics, Elsevier, vol. 83(1), pages 87-121, January.
    13. Michael Monoyios, 2020. "Duality for optimal consumption under no unbounded profit with bounded risk," Papers 2006.04687, arXiv.org, revised Dec 2021.
    14. Constantinos Kardaras, 2019. "Stochastic integration with respect to arbitrary collections of continuous semimartingales and applications to Mathematical Finance," Papers 1908.03946, arXiv.org, revised Aug 2019.
    15. Kasper Larsen & Gordan v{Z}itkovi'c, 2011. "On utility maximization under convex portfolio constraints," Papers 1102.0346, arXiv.org, revised Feb 2013.
    16. Morten Tolver Kronborg, 2014. "Optimal Consumption and Investment with Labor Income and European/American Capital Guarantee," Risks, MDPI, vol. 2(2), pages 1-24, May.
    17. Pietro Siorpaes, 2015. "Optimal investment and price dependence in a semi-static market," Finance and Stochastics, Springer, vol. 19(1), pages 161-187, January.
    18. Kim Weston, 2016. "Stability of utility maximization in nonequivalent markets," Finance and Stochastics, Springer, vol. 20(2), pages 511-541, April.
    19. Horst, Ulrich & Hu, Ying & Imkeller, Peter & Réveillac, Anthony & Zhang, Jianing, 2014. "Forward–backward systems for expected utility maximization," Stochastic Processes and their Applications, Elsevier, vol. 124(5), pages 1813-1848.
    20. Michael Monoyios & Oleksii Mostovyi, 2022. "Stability of the Epstein-Zin problem," Papers 2208.09895, arXiv.org, revised Apr 2023.
    21. Dirk Becherer & Wilfried Kuissi-Kamdem & Olivier Menoukeu-Pamen, 2023. "Optimal consumption with labor income and borrowing constraints for recursive preferences," Working Papers hal-04017143, HAL.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2011.00732. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.