My bibliography
Save this item
Web search queries can predict stock market volumes
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- David Garcia & Claudio Juan Tessone & Pavlin Mavrodiev & Nicolas Perony, 2014. "The digital traces of bubbles: feedback cycles between socio-economic signals in the Bitcoin economy," Papers 1408.1494, arXiv.org.
- Kristoufek, Ladislav, 2015.
"Power-law correlations in finance-related Google searches, and their cross-correlations with volatility and traded volume: Evidence from the Dow Jones Industrial components,"
Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 428(C), pages 194-205.
- Ladislav Kristoufek, 2015. "Power-law correlations in finance-related Google searches, and their cross-correlations with volatility and traded volume: Evidence from the Dow Jones Industrial components," Papers 1502.00225, arXiv.org.
- T. T. Chen & B. Zheng & Y. Li & X. F. Jiang, 2017. "New approaches in agent-based modeling of complex financial systems," Papers 1703.06840, arXiv.org.
- Jichang Dong & Wei Dai & Ying Liu & Lean Yu & Jie Wang, 2019. "Forecasting Chinese Stock Market Prices using Baidu Search Index with a Learning-Based Data Collection Method," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(05), pages 1605-1629, September.
- Young Bin Kim & Sang Hyeok Lee & Shin Jin Kang & Myung Jin Choi & Jung Lee & Chang Hun Kim, 2015. "Virtual World Currency Value Fluctuation Prediction System Based on User Sentiment Analysis," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-18, August.
- Guo, Jian-Feng & Ji, Qiang, 2013. "How does market concern derived from the Internet affect oil prices?," Applied Energy, Elsevier, vol. 112(C), pages 1536-1543.
- Liu, Jian-Guo & Yang, Zhen-Hua & Li, Sheng-Nan & Yu, Chang-Rui, 2018. "A generative model for the collective attention of the Chinese stock market investors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 1175-1182.
- Zhen-Hua Yang & Jian-Guo Liu & Chang-Rui Yu & Jing-Ti Han, 2017. "Quantifying the effect of investors’ attention on stock market," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-16, May.
- David W Carter & Scott Crosson & Christopher Liese, 2015. "Nowcasting Intraseasonal Recreational Fishing Harvest with Internet Search Volume," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-18, September.
- Matteo Accornero & Mirko Moscatelli, 2018. "Listening to the buzz: social media sentiment and retail depositors' trust," Temi di discussione (Economic working papers) 1165, Bank of Italy, Economic Research and International Relations Area.
- Ding Ding & Chong Guan & Calvin M. L. Chan & Wenting Liu, 2020. "Building stock market resilience through digital transformation: using Google trends to analyze the impact of COVID-19 pandemic," Frontiers of Business Research in China, Springer, vol. 14(1), pages 1-21, December.
- Chih-Yu Chin & Chia-Hsien Tang & Yen-Hsien Lee, 2020. "The Social Network Volume of COVID-19 and Stock Market Response," Journal of Applied Finance & Banking, SCIENPRESS Ltd, vol. 10(6), pages 1-4.
- Dimitris Andriosopoulos & Michalis Doumpos & Panos M. Pardalos & Constantin Zopounidis, 2019.
"Computational approaches and data analytics in financial services: A literature review,"
Journal of the Operational Research Society, Taylor & Francis Journals, vol. 70(10), pages 1581-1599, October.
- Dimitris Andriosopoulos & Michael Doumpos & Panos M. Pardalos & Constantin Zopounidis, 2019. "Computational approaches and data analytics in financial services: A literature review," Post-Print hal-02879937, HAL.
- Dimitris Andriosopoulos & Michael Doumpos & Panos M. Pardalos & Constantin Zopounidis, 2019. "Computational approaches and data analytics in financial services: A literature review," Post-Print hal-02880149, HAL.
- Ana Fern'andez Vilas & Rebeca D'iaz Redondo & Ant'on Lorenzo Garc'ia, 2023. "The irruption of cryptocurrencies into Twitter cashtags: a classifying solution," Papers 2312.11531, arXiv.org.
- David Garcia & Frank Schweitzer, 2015. "Social signals and algorithmic trading of Bitcoin," Papers 1506.01513, arXiv.org, revised Sep 2015.
- Jaroslav Pavlicek & Ladislav Kristoufek, 2015.
"Nowcasting Unemployment Rates with Google Searches: Evidence from the Visegrad Group Countries,"
PLOS ONE, Public Library of Science, vol. 10(5), pages 1-11, May.
- Pavlicek, Jaroslav & Kristoufek, Ladislav, 2015. "Nowcasting unemployment rates with Google searches: Evidence from the Visegrad Group countries," FinMaP-Working Papers 34, Collaborative EU Project FinMaP - Financial Distortions and Macroeconomic Performance: Expectations, Constraints and Interaction of Agents.
- Federico Garzarelli & Matthieu Cristelli & Andrea Zaccaria & Luciano Pietronero, 2011. "Memory effects in stock price dynamics: evidences of technical trading," Papers 1110.5197, arXiv.org.
- Martina Halouskov'a & Daniel Stav{s}ek & Mat'uv{s} Horv'ath, 2022. "The role of investor attention in global asset price variation during the invasion of Ukraine," Papers 2205.05985, arXiv.org, revised Aug 2022.
- Dirk Ulbricht & Konstantin A. Kholodilin & Tobias Thomas, 2017.
"Do Media Data Help to Predict German Industrial Production?,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 36(5), pages 483-496, August.
- Kholodilin, Konstantin A. & Thomas, Tobias & Ulbricht, Dirk, 2014. "Do media data help to predict German industrial production?," DICE Discussion Papers 149, Heinrich Heine University Düsseldorf, Düsseldorf Institute for Competition Economics (DICE).
- Konstantin A. Kholodilin & Tobias Thomas & Dirk Ulbricht, 2014. "Do Media Data Help to Predict German Industrial Production?," Discussion Papers of DIW Berlin 1393, DIW Berlin, German Institute for Economic Research.
- Thomas J Hwang, 2013. "Stock Market Returns and Clinical Trial Results of Investigational Compounds: An Event Study Analysis of Large Biopharmaceutical Companies," PLOS ONE, Public Library of Science, vol. 8(8), pages 1-8, August.
- Raphael H Heiberger, 2015. "Collective Attention and Stock Prices: Evidence from Google Trends Data on Standard and Poor's 100," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-14, August.
- Semen Son-Turan, 2016. "The Impact of Investor Sentiment on the "Leverage Effect"," International Econometric Review (IER), Econometric Research Association, vol. 8(1), pages 4-18, April.
- Eli Arditi & Eldad Yechiam & Gal Zahavi, 2015. "Association between Stock Market Gains and Losses and Google Searches," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-12, October.
- Milla Siikanen & Kk{e}stutis Baltakys & Juho Kanniainen & Ravi Vatrapu & Raghava Mukkamala & Abid Hussain, 2017. "Facebook drives behavior of passive households in stock markets," Papers 1709.07300, arXiv.org, revised May 2018.
- Coble, David & Pincheira, Pablo, 2017. "Nowcasting Building Permits with Google Trends," MPRA Paper 76514, University Library of Munich, Germany.
- Halousková, Martina & Stašek, Daniel & Horváth, Matúš, 2022. "The role of investor attention in global asset price variation during the invasion of Ukraine," Finance Research Letters, Elsevier, vol. 50(C).
- Ahelegbey, Daniel Felix & Celani, Alessandro & Cerchiello, Paola, 2024. "Measuring the impact of the EU health emergency response authority on the economic sectors and the public sentiment," Socio-Economic Planning Sciences, Elsevier, vol. 92(C).
- Shan Lu & Jichang Zhao & Huiwen Wang, 2018. "The Power of Trading Polarity: Evidence from China Stock Market Crash," Papers 1802.01143, arXiv.org.
- Gabriele Ranco & Ilaria Bordino & Giacomo Bormetti & Guido Caldarelli & Fabrizio Lillo & Michele Treccani, 2014. "Coupling news sentiment with web browsing data improves prediction of intra-day price dynamics," Papers 1412.3948, arXiv.org, revised Dec 2015.
- Gabriele Ranco & Ilaria Bordino & Giacomo Bormetti & Guido Caldarelli & Fabrizio Lillo & Michele Treccani, 2016. "Coupling News Sentiment with Web Browsing Data Improves Prediction of Intra-Day Price Dynamics," PLOS ONE, Public Library of Science, vol. 11(1), pages 1-14, January.
- Piñeiro-Chousa, Juan Ramón & López-Cabarcos, M. Ángeles & Pérez-Pico, Ada María, 2016. "Examining the influence of stock market variables on microblogging sentiment," Journal of Business Research, Elsevier, vol. 69(6), pages 2087-2092.
- Ilaria Gianstefani & Luigi Longo & Massimo Riccaboni, 2022. "The echo chamber effect resounds on financial markets: a social media alert system for meme stocks," Papers 2203.13790, arXiv.org.
- Ji, Qiang & Guo, Jian-Feng, 2015. "Oil price volatility and oil-related events: An Internet concern study perspective," Applied Energy, Elsevier, vol. 137(C), pages 256-264.
- Ming-Yuan Yang & Sai-Ping Li & Li-Xin Zhong & Fei Ren, 2018. "Modelling stock correlations with expected returns from investors," Papers 1803.02019, arXiv.org, revised Mar 2018.
- Juan Manuel García Sánchez & Xavier Vilasís Cardona & Alexandre Lerma Martín, 2022. "Influence of Car Configurator Webpage Data from Automotive Manufacturers on Car Sales by Means of Correlation and Forecasting," Forecasting, MDPI, vol. 4(3), pages 1-20, July.
- Canhoto, Ana Isabel & Clear, Fintan, 2020. "Artificial intelligence and machine learning as business tools: A framework for diagnosing value destruction potential," Business Horizons, Elsevier, vol. 63(2), pages 183-193.
- Long Wen & Chang Liu & Haiyan Song, 2019. "Forecasting tourism demand using search query data: A hybrid modelling approach," Tourism Economics, , vol. 25(3), pages 309-329, May.
- Matija Piv{s}korec & Nino Antulov-Fantulin & Petra Kralj Novak & Igor Mozetiv{c} & Miha Grv{c}ar & Irena Vodenska & Tomislav v{S}muc, 2014. "News Cohesiveness: an Indicator of Systemic Risk in Financial Markets," Papers 1402.3483, arXiv.org.
- Abay,Kibrom A. & Hirfrfot,Kibrom Tafere & Woldemichael,Andinet, 2020. "Winners and Losers from COVID-19 : Global Evidence from Google Search," Policy Research Working Paper Series 9268, The World Bank.
- Asgari, Mahdi & Nemati, Mehdi & Zheng, Yuqing, 2018. "Nowcasting Food Stock Movement using Food Safety Related Web Search Queries," 2018 Annual Meeting, February 2-6, 2018, Jacksonville, Florida 266323, Southern Agricultural Economics Association.
- Takao Noguchi & Neil Stewart & Christopher Y Olivola & Helen Susannah Moat & Tobias Preis, 2014. "Characterizing the Time-Perspective of Nations with Search Engine Query Data," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-5, April.
- Latoeiro, Pedro & Ramos, Sofía B. & Veiga, Helena, 2013. "Predictability of stock market activity using Google search queries," DES - Working Papers. Statistics and Econometrics. WS ws130605, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Gabriele Ranco & Darko Aleksovski & Guido Caldarelli & Miha Grčar & Igor Mozetič, 2015. "The Effects of Twitter Sentiment on Stock Price Returns," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-21, September.
- Young Bin Kim & Kyeongpil Kang & Jaegul Choo & Shin Jin Kang & TaeHyeong Kim & JaeHo Im & Jong-Hyun Kim & Chang Hun Kim, 2017. "Predicting the Currency Market in Online Gaming via Lexicon-Based Analysis on Its Online Forum," Complexity, Hindawi, vol. 2017, pages 1-10, December.
- Tiziano Squartini & Guido Caldarelli & Giulio Cimini & Andrea Gabrielli & Diego Garlaschelli, 2018. "Reconstruction methods for networks: the case of economic and financial systems," Papers 1806.06941, arXiv.org.
- Arezoo Hatefi Ghahfarrokhi & Mehrnoush Shamsfard, 2019. "Tehran Stock Exchange Prediction Using Sentiment Analysis of Online Textual Opinions," Papers 1909.03792, arXiv.org, revised Sep 2019.
- Ahelegbey, Daniel Felix & Cerchiello, Paola & Scaramozzino, Roberta, 2022.
"Network based evidence of the financial impact of Covid-19 pandemic,"
International Review of Financial Analysis, Elsevier, vol. 81(C).
- Daniel Felix Ahelegbey & Paola Cerchiello & Roberta Scaramozzino, 2021. "Network Based Evidence of the Financial Impact of Covid-19 Pandemic," DEM Working Papers Series 198, University of Pavia, Department of Economics and Management.
- Xiao-Qian Sun & Hua-Wei Shen & Xue-Qi Cheng & Yuqing Zhang, 2016. "Market Confidence Predicts Stock Price: Beyond Supply and Demand," PLOS ONE, Public Library of Science, vol. 11(7), pages 1-10, July.
- Semen Son Turan, 2014. "Internet Search Volume and Stock Return Volatility: The Case of Turkish Companies," Information Management and Business Review, AMH International, vol. 6(6), pages 317-328.
- Won Sang Lee & Hyo Shin Choi & So Young Sohn, 2018. "Forecasting new product diffusion using both patent citation and web search traffic," PLOS ONE, Public Library of Science, vol. 13(4), pages 1-12, April.
- Damien Challet & Ahmed Bel Hadj Ayed, 2014.
"Do Google Trend data contain more predictability than price returns?,"
Papers
1403.1715, arXiv.org.
- Damien Challet & Ahmed Bel Hadj Ayed, 2015. "Do Google Trend data contain more predictability than price returns?," Post-Print hal-00960875, HAL.
- Arezoo Hatefi Ghahfarrokhi & Mehrnoush Shamsfard, 2020. "Tehran stock exchange prediction using sentiment analysis of online textual opinions," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 27(1), pages 22-37, January.
- Merve Alanyali & Tobias Preis & Helen Susannah Moat, 2016. "Tracking Protests Using Geotagged Flickr Photographs," PLOS ONE, Public Library of Science, vol. 11(3), pages 1-8, March.
- Li, Zhenghui & Chen, Liming & Dong, Hao, 2021. "What are bitcoin market reactions to its-related events?," International Review of Economics & Finance, Elsevier, vol. 73(C), pages 1-10.
- Bai, Lijuan & Yan, Xiangbin & Yu, Guang, 2019. "Impact of CEO media appearance on corporate performance in social media," The North American Journal of Economics and Finance, Elsevier, vol. 50(C).
- Mario Gutiérrez-Roig & Carlota Segura & Jordi Duch & Josep Perelló, 2016. "Market Imitation and Win-Stay Lose-Shift Strategies Emerge as Unintended Patterns in Market Direction Guesses," PLOS ONE, Public Library of Science, vol. 11(8), pages 1-19, August.
- Audrino, Francesco & Sigrist, Fabio & Ballinari, Daniele, 2020. "The impact of sentiment and attention measures on stock market volatility," International Journal of Forecasting, Elsevier, vol. 36(2), pages 334-357.
- Chong Guan & Wenting Liu & Jack Yu-Chao Cheng, 2022. "Using Social Media to Predict the Stock Market Crash and Rebound amid the Pandemic: The Digital ‘Haves’ and ‘Have-mores’," Annals of Data Science, Springer, vol. 9(1), pages 5-31, February.
- Jaroslav Pavlicek & Ladislav Kristoufek, 2014. "Can Google searches help nowcast and forecast unemployment rates in the Visegrad Group countries?," Papers 1408.6639, arXiv.org.
- Xianlei Dong & Johan Bollen, 2015. "Computational Models of Consumer Confidence from Large-Scale Online Attention Data: Crowd-Sourcing Econometrics," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-18, March.
- Paola Cerchiello & Paolo Giudici, 2017. "Categorical network models for systemic risk measurement," Quality & Quantity: International Journal of Methodology, Springer, vol. 51(4), pages 1593-1609, July.
- Chen, Ting-Ting & Zheng, Bo & Li, Yan & Jiang, Xiong-Fei, 2018. "Information driving force and its application in agent-based modeling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 593-601.
- Agosto, Arianna & Cerchiello, Paola & Pagnottoni, Paolo, 2022. "Sentiment, Google queries and explosivity in the cryptocurrency market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
- Abay, Kibrom A. & Ibrahim, Hosam, 2020. "Winners and losers from COVID-19: Evidence from Google search data for Egypt," MENA policy notes 8, International Food Policy Research Institute (IFPRI).
- Wang, Jue & Athanasopoulos, George & Hyndman, Rob J. & Wang, Shouyang, 2018. "Crude oil price forecasting based on internet concern using an extreme learning machine," International Journal of Forecasting, Elsevier, vol. 34(4), pages 665-677.