My bibliography
Save this item
True and Apparent Scaling: The Proximity of the Markov-Switching Multifractal Model to Long-Range Dependence
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Nasr, Adnen Ben & Lux, Thomas & Ajmi, Ahdi Noomen & Gupta, Rangan, 2016.
"Forecasting the volatility of the Dow Jones Islamic Stock Market Index: Long memory vs. regime switching,"
International Review of Economics & Finance, Elsevier, vol. 45(C), pages 559-571.
- Ben Nasr, Adnen & Lux, Thomas & Ajmi, Ahdi Noomen & Gupta, Rangan, 2014. "Forecasting the Volatility of the Dow Jones Islamic Stock Market Index: Long Memory vs. Regime Switching," FinMaP-Working Papers 2, Collaborative EU Project FinMaP - Financial Distortions and Macroeconomic Performance: Expectations, Constraints and Interaction of Agents.
- Nasr, Adnen Ben & Lux, Thomas & Ajm, Ahdi Noomen & Gupta, Rangan, 2014. "Forecasting the volatility of the dow jones islamic stock market index: Long memory vs. regime switching," Economics Working Papers 2014-07, Christian-Albrechts-University of Kiel, Department of Economics.
- Adnen Ben Nasr & Thomas Lux & Ahdi N. Ajmi & Rangan Gupta, 2014. "Forecasting the Volatility of the Dow Jones Islamic Stock Market Index: Long Memory vs. Regime Switching," Working Papers 201412, University of Pretoria, Department of Economics.
- Adnen Ben Nasr & Thomas Lux & Ahdi Noomen Ajmi & Rangan Gupta, 2014. "Forecasting the Volatility of the Dow Jones Islamic Stock Market Index: Long Memory vs. Regime Switching," Working Papers 2014-236, Department of Research, Ipag Business School.
- Buonocore, R.J. & Aste, T. & Di Matteo, T., 2016. "Measuring multiscaling in financial time-series," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 38-47.
- Mawuli Segnon & Rangan Gupta & Keagile Lesame & Mark E. Wohar, 2021.
"High-Frequency Volatility Forecasting of US Housing Markets,"
The Journal of Real Estate Finance and Economics, Springer, vol. 62(2), pages 283-317, February.
- Mawuli Segnon & Rangan Gupta & Keagile Lesame & Mark E. Wohar, 2019. "High-Frequency Volatility Forecasting of US Housing Markets," Working Papers 201977, University of Pretoria, Department of Economics.
- Lahmiri, Salim & Bekiros, Stelios, 2019. "Decomposing the persistence structure of Islamic and green crypto-currencies with nonlinear stepwise filtering," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 334-341.
- Morales, Raffaello & Di Matteo, T. & Aste, Tomaso, 2013. "Non-stationary multifractality in stock returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(24), pages 6470-6483.
- Mawuli Segnon & Stelios Bekiros, 2020. "Forecasting volatility in bitcoin market," Annals of Finance, Springer, vol. 16(3), pages 435-462, September.
- Pagnottoni, Paolo & Spelta, Alessandro & Pecora, Nicolò & Flori, Andrea & Pammolli, Fabio, 2021. "Financial earthquakes: SARS-CoV-2 news shock propagation in stock and sovereign bond markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 582(C).
- Barunik, Jozef & Aste, Tomaso & Di Matteo, T. & Liu, Ruipeng, 2012.
"Understanding the source of multifractality in financial markets,"
Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(17), pages 4234-4251.
- Jozef Barunik & Tomaso Aste & Tiziana Di Matteo & Ruipeng Liu, 2012. "Understanding the source of multifractality in financial markets," Papers 1201.1535, arXiv.org, revised Jan 2012.
- Yufang Liu & Weiguo Zhang & Junhui Fu & Xiang Wu, 2020. "Multifractal Analysis of Realized Volatilities in Chinese Stock Market," Computational Economics, Springer;Society for Computational Economics, vol. 56(2), pages 319-336, August.
- Mawuli Segnon & Thomas Lux & Rangan Gupta, 2015.
"Modeling and Forecasting Carbon Dioxide Emission Allowance Spot Price Volatility: Multifractal vs. GARCH-Type Volatility Models,"
Working Papers
201550, University of Pretoria, Department of Economics.
- Segnon, Mawuli & Lux, Thomas & Gupta, Rangan, 2015. "Modeling and Forecasting Carbon Dioxide Emission Allowance Spot Price Volatility: Multifractal vs. GARCH-type Volatility Models," FinMaP-Working Papers 46, Collaborative EU Project FinMaP - Financial Distortions and Macroeconomic Performance: Expectations, Constraints and Interaction of Agents.
- Raffaello Morales & T. Di Matteo & Ruggero Gramatica & Tomaso Aste, 2011. "Dynamical Hurst exponent as a tool to monitor unstable periods in financial time series," Papers 1109.0465, arXiv.org.
- Lee, Hojin & Chang, Woojin, 2015. "Multifractal regime detecting method for financial time series," Chaos, Solitons & Fractals, Elsevier, vol. 70(C), pages 117-129.
- Lux, Thomas & Segnon, Mawuli & Gupta, Rangan, 2016. "Forecasting crude oil price volatility and value-at-risk: Evidence from historical and recent data," Energy Economics, Elsevier, vol. 56(C), pages 117-133.
- Lux, Thomas & Morales-Arias, Leonardo, 2010. "Forecasting volatility under fractality, regime-switching, long memory and student-t innovations," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2676-2692, November.
- Liu, Yufang & Zhang, Weiguo & Fu, Junhui, 2016. "Binomial Markov-Switching Multifractal model with Skewed t innovations and applications to Chinese SSEC Index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 56-66.
- Lux, Thomas & Morales-Arias, Leonardo, 2010. "Relative forecasting performance of volatility models: Monte Carlo evidence," Kiel Working Papers 1582, Kiel Institute for the World Economy (IfW Kiel).
- Riccardo Junior Buonocore & Tomaso Aste & Tiziana Di Matteo, 2015. "Measuring multiscaling in financial time-series," Papers 1509.05471, arXiv.org, revised Sep 2015.
- Malo, Pekka, 2009. "Modeling electricity spot and futures price dependence: A multifrequency approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(22), pages 4763-4779.
- Lux, Thomas & Segnon, Mawuli & Gupta, Rangan, 2015.
"Modeling and forecasting crude oil price volatility: Evidence from historical and recent data,"
FinMaP-Working Papers
31, Collaborative EU Project FinMaP - Financial Distortions and Macroeconomic Performance: Expectations, Constraints and Interaction of Agents.
- Thomas Lux & Mawuli K. Segnon & Rangan Gupta, 2015. "Modeling and Forecasting Crude Oil Price Volatility: Evidence from Historical and Recent Data," Working Papers 201511, University of Pretoria, Department of Economics.
- Augustyniak, Maciej & Dufays, Arnaud, 2018. "Modeling macroeconomic series with regime-switching models characterized by a high-dimensional state space," Economics Letters, Elsevier, vol. 170(C), pages 122-126.
- Lux, Thomas & Morales-Arias, Leonardo, 2009. "Forecasting volatility under fractality, regime-switching, long memory and student-t innovations," Kiel Working Papers 1532, Kiel Institute for the World Economy (IfW Kiel).
- Antoniades, I.P. & Brandi, Giuseppe & Magafas, L. & Di Matteo, T., 2021. "The use of scaling properties to detect relevant changes in financial time series: A new visual warning tool," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
- Ioannis P. Antoniades & Giuseppe Brandi & L. G. Magafas & T. Di Matteo, 2020. "The use of scaling properties to detect relevant changes in financial time series: a new visual warning tool," Papers 2010.08890, arXiv.org, revised Dec 2020.
- Kukacka, Jiri & Kristoufek, Ladislav, 2020. "Do ‘complex’ financial models really lead to complex dynamics? Agent-based models and multifractality," Journal of Economic Dynamics and Control, Elsevier, vol. 113(C).
- Mawuli Segnon & Stelios Bekiros & Bernd Wilfling, 2018.
"Forecasting Inflation Uncertainty in the G7 Countries,"
Econometrics, MDPI, vol. 6(2), pages 1-25, April.
- Mawuli Segnon & Stelios Bekiros & Bernd Wilfling, 2018. "Forecasting Inflation Uncertainty in the G7 Countries," CQE Working Papers 7118, Center for Quantitative Economics (CQE), University of Muenster.
- Erdős, Péter & Li, Youwei & Liu, Ruipeng & Mende, Alexander, 2021. "Same same but different – Stylized facts of CTA sub strategies," International Review of Financial Analysis, Elsevier, vol. 74(C).
- Pagnottoni, Paolo & Spelta, Alessandro & Flori, Andrea & Pammolli, Fabio, 2022. "Climate change and financial stability: Natural disaster impacts on global stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 599(C).
- Morales, Raffaello & Di Matteo, T. & Gramatica, Ruggero & Aste, Tomaso, 2012. "Dynamical generalized Hurst exponent as a tool to monitor unstable periods in financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(11), pages 3180-3189.
- Mulligan, Robert F., 2014. "Multifractality of sectoral price indices: Hurst signature analysis of Cantillon effects in disequilibrium factor markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 403(C), pages 252-264.
- Segnon, Mawuli & Lux, Thomas, 2013. "Multifractal models in finance: Their origin, properties, and applications," Kiel Working Papers 1860, Kiel Institute for the World Economy (IfW Kiel).
- Lux, Thomas & Morales-Arias, Leonardo & Sattarhoff, Cristina, 2011. "A Markov-switching multifractal approach to forecasting realized volatility," Kiel Working Papers 1737, Kiel Institute for the World Economy (IfW Kiel).
- Mulligan, Robert F., 2017. "The multifractal character of capacity utilization over the business cycle: An application of Hurst signature analysis," The Quarterly Review of Economics and Finance, Elsevier, vol. 63(C), pages 147-152.
- Pakrashi, Vikram & Kelly, Joe & Harkin, Julie & Farrell, Aidan, 2013. "Hurst exponent footprints from activities on a large structural system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(8), pages 1803-1817.
- Wang, Yi & Sun, Qi & Zhang, Zilu & Chen, Liqing, 2022. "A risk measure of the stock market that is based on multifractality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
- Wei, Yu & Wang, Yudong & Huang, Dengshi, 2011. "A copula–multifractal volatility hedging model for CSI 300 index futures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4260-4272.
- Mawuli Segnon & Stelios Bekiros, 2019. "Forecasting Volatility in Cryptocurrency Markets," CQE Working Papers 7919, Center for Quantitative Economics (CQE), University of Muenster.
- Segnon, Mawuli & Lux, Thomas & Gupta, Rangan, 2017. "Modeling and forecasting the volatility of carbon dioxide emission allowance prices: A review and comparison of modern volatility models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 692-704.