IDEAS home Printed from https://ideas.repec.org/r/aen/journl/1984v05-03-a06.html
   My bibliography  Save this item

Conditional Demand Analysis for Estimating Residential End-Use Load Profiles

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Frondel, Manuel & Sommer, Stephan & Vance, Colin, 2019. "Heterogeneity in German Residential Electricity Consumption: A quantile regression approach," Energy Policy, Elsevier, vol. 131(C), pages 370-379.
  2. Papineau, Maya & Yassin, Kareman & Newsham, Guy & Brice, Sarah, 2021. "Conditional demand analysis as a tool to evaluate energy policy options on the path to grid decarbonization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
  3. Mathias Müller & Florian Biedenbach & Janis Reinhard, 2020. "Development of an Integrated Simulation Model for Load and Mobility Profiles of Private Households," Energies, MDPI, vol. 13(15), pages 1-33, July.
  4. Shiraki, Hiroto & Nakamura, Shogo & Ashina, Shuichi & Honjo, Keita, 2016. "Estimating the hourly electricity profile of Japanese households – Coupling of engineering and statistical methods," Energy, Elsevier, vol. 114(C), pages 478-491.
  5. McLoughlin, Fintan & Duffy, Aidan & Conlon, Michael, 2015. "A clustering approach to domestic electricity load profile characterisation using smart metering data," Applied Energy, Elsevier, vol. 141(C), pages 190-199.
  6. Bodil M. Larsen & Runa Nesbakken, 2003. "How to quantify household electricity end-use consumption," Discussion Papers 346, Statistics Norway, Research Department.
  7. Akito Ozawa & Ryota Furusato & Yoshikuni Yoshida, 2017. "Tailor-Made Feedback to Reduce Residential Electricity Consumption: The Effect of Information on Household Lifestyle in Japan," Sustainability, MDPI, vol. 9(4), pages 1-23, March.
  8. Mallikarjun, Sreekanth & Lewis, Herbert F., 2014. "Energy technology allocation for distributed energy resources: A strategic technology-policy framework," Energy, Elsevier, vol. 72(C), pages 783-799.
  9. Rudolf K.-H. Dennerlein, 1987. "Residential Demand for Electrical Appliances and Electricity in the Federal Republic of Germany," The Energy Journal, , vol. 8(1), pages 69-86, July.
  10. Bartels, Robert & Fiebig, Denzil G., 1995. "Optimal design in end-use metering experiments," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 39(3), pages 305-309.
  11. Shigeru Matsumoto, 2015. "Electric Appliance Ownership and Usage: Application of Conditional Demand Analysis to Japanese Household Data," Proceedings of International Academic Conferences 3105452, International Institute of Social and Economic Sciences.
  12. Hannah Goozee, 2017. "Energy, poverty and development: a primer for the Sustainable Development Goals," Working Papers 156, International Policy Centre for Inclusive Growth.
  13. Huang, Yunyou & Zhan, Jianfeng & Luo, Chunjie & Wang, Lei & Wang, Nana & Zheng, Daoyi & Fan, Fanda & Ren, Rui, 2019. "An electricity consumption model for synthesizing scalable electricity load curves," Energy, Elsevier, vol. 169(C), pages 674-683.
  14. Grandjean, A. & Adnot, J. & Binet, G., 2012. "A review and an analysis of the residential electric load curve models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6539-6565.
  15. Onuma, Hiroki & Matsumoto, Shigeru & Arimura, Toshi H., 2020. "How much household electricity consumption is actually saved by replacement with Light-Emitting Diodes (LEDs)?," Economic Analysis and Policy, Elsevier, vol. 68(C), pages 224-238.
  16. Frontuto, Vito, 2019. "Forecasting household consumption of fuels: A multiple discrete-continuous approach," Applied Energy, Elsevier, vol. 240(C), pages 205-214.
  17. Li, Wenliang & Zhou, Yuyu & Cetin, Kristen & Eom, Jiyong & Wang, Yu & Chen, Gang & Zhang, Xuesong, 2017. "Modeling urban building energy use: A review of modeling approaches and procedures," Energy, Elsevier, vol. 141(C), pages 2445-2457.
  18. Frondel, Manuel & Sommer, Stephan & Vance, Colin, 2017. "Heterogeneity in residential electricity consumption: A quantile regression approach," Ruhr Economic Papers 722, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
  19. Boogen, Nina & Datta, Souvik & Filippini, Massimo, 2021. "Estimating residential electricity demand: New empirical evidence," Energy Policy, Elsevier, vol. 158(C).
  20. Mehrnaz Anvari & Elisavet Proedrou & Benjamin Schäfer & Christian Beck & Holger Kantz & Marc Timme, 2022. "Data-driven load profiles and the dynamics of residential electricity consumption," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
  21. Hanne Marit Dalen and Bodil M. Larsen, 2015. "Residential End-use Electricity Demand: Development over Time," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
  22. Newsham, Guy R. & Donnelly, Cara L., 2013. "A model of residential energy end-use in Canada: Using conditional demand analysis to suggest policy options for community energy planners," Energy Policy, Elsevier, vol. 59(C), pages 133-142.
  23. Zhao, Hai-xiang & Magoulès, Frédéric, 2012. "A review on the prediction of building energy consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3586-3592.
  24. Ma, Weiwu & Fang, Song & Liu, Gang & Zhou, Ruoyu, 2017. "Modeling of district load forecasting for distributed energy system," Applied Energy, Elsevier, vol. 204(C), pages 181-205.
  25. Chen, Jianli & Adhikari, Rajendra & Wilson, Eric & Robertson, Joseph & Fontanini, Anthony & Polly, Ben & Olawale, Opeoluwa, 2022. "Stochastic simulation of occupant-driven energy use in a bottom-up residential building stock model," Applied Energy, Elsevier, vol. 325(C).
  26. Inoue, Nozomu & Matsumoto, Shigeru, 2019. "An examination of losses in energy savings after the Japanese Top Runner Program?," Energy Policy, Elsevier, vol. 124(C), pages 312-319.
  27. Aydinalp-Koksal, Merih & Ugursal, V. Ismet, 2008. "Comparison of neural network, conditional demand analysis, and engineering approaches for modeling end-use energy consumption in the residential sector," Applied Energy, Elsevier, vol. 85(4), pages 271-296, April.
  28. Aydinalp, Merih & Ismet Ugursal, V. & Fung, Alan S., 2002. "Modeling of the appliance, lighting, and space-cooling energy consumptions in the residential sector using neural networks," Applied Energy, Elsevier, vol. 71(2), pages 87-110, February.
  29. Farzan, Farbod & Jafari, Mohsen A. & Gong, Jie & Farzan, Farnaz & Stryker, Andrew, 2015. "A multi-scale adaptive model of residential energy demand," Applied Energy, Elsevier, vol. 150(C), pages 258-273.
  30. Hanne Marit Dalen & Bodil M. Larsen, 2013. "Residential end-use electricity demand. Development over time," Discussion Papers 736, Statistics Norway, Research Department.
  31. Hannah Goozee, 2017. "Energy, Poverty and Development: A Primer for the Sustainable Development Goals," Working Papers id:11933, eSocialSciences.
  32. Kavousian, Amir & Rajagopal, Ram & Fischer, Martin, 2013. "Determinants of residential electricity consumption: Using smart meter data to examine the effect of climate, building characteristics, appliance stock, and occupants' behavior," Energy, Elsevier, vol. 55(C), pages 184-194.
  33. Swan, Lukas G. & Ugursal, V. Ismet, 2009. "Modeling of end-use energy consumption in the residential sector: A review of modeling techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1819-1835, October.
  34. Yildiz, B. & Bilbao, J.I. & Dore, J. & Sproul, A.B., 2017. "Recent advances in the analysis of residential electricity consumption and applications of smart meter data," Applied Energy, Elsevier, vol. 208(C), pages 402-427.
  35. Jiyong Eom & Frank A. Wolak, 2020. "Breaking Routine for Energy Savings: An Appliance-level Analysis of Small Business Behavior under Dynamic Prices," NBER Working Papers 27263, National Bureau of Economic Research, Inc.
  36. Gholami, M. & Barbaresi, A. & Torreggiani, D. & Tassinari, P., 2020. "Upscaling of spatial energy planning, phases, methods, and techniques: A systematic review through meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
  37. Matsumoto, Shigeru, 2016. "How do household characteristics affect appliance usage? Application of conditional demand analysis to Japanese household data," Energy Policy, Elsevier, vol. 94(C), pages 214-223.
  38. Tepe, Benedikt & Haberschusz, David & Figgener, Jan & Hesse, Holger & Uwe Sauer, Dirk & Jossen, Andreas, 2023. "Feature-conserving gradual anonymization of load profiles and the impact on battery storage systems," Applied Energy, Elsevier, vol. 343(C).
  39. Fumo, Nelson & Rafe Biswas, M.A., 2015. "Regression analysis for prediction of residential energy consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 332-343.
  40. Larsen, Bodil Merethe & Nesbakken, Runa, 2004. "Household electricity end-use consumption: results from econometric and engineering models," Energy Economics, Elsevier, vol. 26(2), pages 179-200, March.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.