IDEAS home Printed from https://ideas.repec.org/r/aea/jecper/v23y2009i2p53-75.html
   My bibliography  Save this item

The Coming Global Climate-Technology Revolution

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Aghion, Philippe & Boneva, Lena & Breckenfelder, Johannes & Laeven, Luc & Olovsson, Conny & Popov, Alexander & Rancoita, Elena, 2022. "Financial Markets and Green Innovation," Working Paper Series 2686, European Central Bank.
  2. Richard S.J. Tol, 2016. "Distributional Implications of Geoengineering," Working Paper Series 8316, Department of Economics, University of Sussex.
  3. Benchekroun, H. & Ray Chaudhuri, A., 2010. "'The Voracity Effect' and Climate Change : The Impact of Clean Technologies," Discussion Paper 2010-97, Tilburg University, Center for Economic Research.
  4. Wim Naudé, 2011. "Climate Change and Industrial Policy," Sustainability, MDPI, vol. 3(7), pages 1-19, July.
  5. Dumas, Marion & Rising, James & Urpelainen, Johannes, 2016. "Political competition and renewable energy transitions over long time horizons: A dynamic approach," Ecological Economics, Elsevier, vol. 124(C), pages 175-184.
  6. Ian W. R. Martin & Robert S. Pindyck, 2015. "Averting Catastrophes: The Strange Economics of Scylla and Charybdis," American Economic Review, American Economic Association, vol. 105(10), pages 2947-2985, October.
  7. Pablo Del Río, 2010. "Climate Change Policies and New Technologies," Chapters, in: Emilio Cerdá Tena & Xavier Labandeira (ed.), Climate Change Policies, chapter 5, Edward Elgar Publishing.
  8. Urpelainen, Johannes, 2011. "Export orientation and domestic electricity generation: Effects on energy efficiency innovation in select sectors," Energy Policy, Elsevier, vol. 39(9), pages 5638-5646, September.
  9. Hoel, Michael & Jensen, Svenn, 2012. "Cutting costs of catching carbon—Intertemporal effects under imperfect climate policy," Resource and Energy Economics, Elsevier, vol. 34(4), pages 680-695.
  10. Ryle S. Perera & Kimitoshi Sato, 2023. "Ensuring Mutual Benefit in a Trans-boundary Industrial Pollution Control Problem," Computational Economics, Springer;Society for Computational Economics, vol. 62(1), pages 91-128, June.
  11. Clancy, Matthew S., 2015. "Combinatorial innovation, evidence from patent data, and mandated innovation," ISU General Staff Papers 201501010800005678, Iowa State University, Department of Economics.
  12. Strand, Jon & Miller, Sebastian & Siddiqui, Sauleh, 2011. "Infrastructure investments under uncertainty with the possibility of retrofit : theory and simulations," Policy Research Working Paper Series 5516, The World Bank.
  13. Johannes Pfeiffer & Luise Röpke & Jana Lippelt, 2010. "Kurz zum Klima: Pumpspeicherwerke – bewährte Technologie für eine grüne Zukunft?," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 63(16), pages 44-46, August.
  14. Alexandre Sauquet, 2014. "Exploring the nature of inter-country interactions in the process of ratifying international environmental agreements: the case of the Kyoto Protocol," Public Choice, Springer, vol. 159(1), pages 141-158, April.
  15. Corinne Langinier & Amrita Ray Chaudhuri, 2020. "Green Technology and Patents in the Presence of Green Consumers," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 7(1), pages 73-101.
  16. Langinier, Corinne & Ray Chaudhuri, Amrita, 2024. "Green Patents in an Oligopolistic Market with Green Consumers," Working Papers 2024-7, University of Alberta, Department of Economics.
  17. El-Sayed, Abeer & Rubio, Santiago J., 2014. "Sharing R&D investments in cleaner technologies to mitigate climate change," Resource and Energy Economics, Elsevier, vol. 38(C), pages 168-180.
  18. Richard Cornes & Dirk Rübbelke, 2012. "On the Private Provision of Contentious Public Characteristics," ANU Working Papers in Economics and Econometrics 2012-577, Australian National University, College of Business and Economics, School of Economics.
  19. Dugoua, Eugenie & Dumas, Marion, 2021. "Green product innovation in industrial networks: A theoretical model," Journal of Environmental Economics and Management, Elsevier, vol. 107(C).
  20. Todd Sandler, 2018. "Collective action and geoengineering," The Review of International Organizations, Springer, vol. 13(1), pages 105-125, March.
  21. Rolf Färe & Shawna Grosskopf & Dimitri Margaritis & William Weber, 2012. "Technological change and timing reductions in greenhouse gas emissions," Journal of Productivity Analysis, Springer, vol. 37(3), pages 205-216, June.
  22. Richard S.J. Tol, 2016. "Distributional Implications of Geoengineering," Working Paper Series 08316, Department of Economics, University of Sussex Business School.
  23. Gregor Schwerhoff, 2013. "Leadership and International Climate Cooperation," Working Papers 2013.97, Fondazione Eni Enrico Mattei.
  24. Emilson C. D. Silva, 2017. "Self-enforcing agreements under unequal nationally determined contributions," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 24(4), pages 705-729, August.
  25. Langinier, Corinne & Martinez-Zarzoso, Inmaculada & Ray Chaudhuri, Amrita, 2024. "Environmental Regulations and Green Innovation: The Role of Trade and Technology Transfer," Working Papers 2024-8, University of Alberta, Department of Economics.
  26. Johannes Urpelainen, 2013. "A model of dynamic climate governance: dream big, win small," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 13(2), pages 107-125, May.
  27. Thomas Hale & Johannes Urpelainen, 2015. "When and how can unilateral policies promote the international diffusion of environmental policies and clean technology?," Journal of Theoretical Politics, , vol. 27(2), pages 177-205, April.
  28. Edmonds, James & Calvin, Katherine & Clarke, Leon & Kyle, Page & Wise, Marshall, 2012. "Energy and technology lessons since Rio," Energy Economics, Elsevier, vol. 34(S1), pages 7-14.
  29. Gøril L. Andreassen & Jo Thori Lind, 2024. "Climate, Technology and Value: Insights from the First Decade with Mass-Consumption of Electric Vehicles," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 87(7), pages 1783-1844, July.
  30. Benchekroun, Hassan & Ray Chaudhuri, Amrita, 2014. "Transboundary pollution and clean technologies," Resource and Energy Economics, Elsevier, vol. 36(2), pages 601-619.
  31. Gregory F. Nemet and Adam R. Brandt, 2012. "Willingness to Pay for a Climate Backstop: Liquid Fuel Producers and Direct CO2 Air Capture," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
  32. Guendalina Anzolin & Amir Lebdioui, 2021. "Three Dimensions of Green Industrial Policy in the Context of Climate Change and Sustainable Development," The European Journal of Development Research, Palgrave Macmillan;European Association of Development Research and Training Institutes (EADI), vol. 33(2), pages 371-405, April.
  33. Brandt, Urs Steiner & Svendsen, Gert Tinggaard, 2022. "Is the annual UNFCCC COP the only game in town?," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
  34. Benjamin Jones & Michael Keen & Jon Strand, 2013. "Fiscal implications of climate change," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 20(1), pages 29-70, February.
  35. Stokes, Leah C., 2013. "The politics of renewable energy policies: The case of feed-in tariffs in Ontario, Canada," Energy Policy, Elsevier, vol. 56(C), pages 490-500.
  36. Kosnik, Lea, 2010. "The potential for small scale hydropower development in the US," Energy Policy, Elsevier, vol. 38(10), pages 5512-5519, October.
  37. Jonathon M. Becker & Jared C. Carbone & Andreas Loeschel, 2022. "Induced Innovation and Carbon Leakage," Working Papers 2022-04, Colorado School of Mines, Division of Economics and Business.
  38. Johannes Urpelainen, 2011. "A California Effect for International Environmental Externalities?," International Interactions, Taylor & Francis Journals, vol. 37(2), pages 170-189, April.
  39. Wang, Ping & Han, Wei & Kumail Abbas Rizvi, Syed & Naqvi, Bushra, 2022. "Is Digital Adoption the way forward to Curb Energy Poverty?," Technological Forecasting and Social Change, Elsevier, vol. 180(C).
  40. Cunha-e-Sá, Maria A. & Rosa, Renato & Costa-Duarte, Clara, 2013. "Natural carbon capture and storage (NCCS): Forests, land use and carbon accounting," Resource and Energy Economics, Elsevier, vol. 35(2), pages 148-170.
  41. Johannes Urpelainen & Thijs Van de Graaf, 2015. "The International Renewable Energy Agency: a success story in institutional innovation?," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 15(2), pages 159-177, May.
  42. Waxman, Andrew R. & Corcoran, Sean & Robison, Andrew & Leibowicz, Benjamin D. & Olmstead, Sheila, 2021. "Leveraging scale economies and policy incentives: Carbon capture, utilization & storage in Gulf clusters," Energy Policy, Elsevier, vol. 156(C).
  43. Johannes Urpelainen, 2010. "Enforcing international environmental cooperation: Technological standards can help," The Review of International Organizations, Springer, vol. 5(4), pages 475-496, December.
  44. Hans Gersbach & Quirin Oberpriller & Martin Scheffel, 2019. "Double Free-Riding in Innovation and Abatement: A Rules Treaty Solution," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 73(2), pages 449-483, June.
  45. Greene, D.L. & Boudreaux, P.R. & Dean, D.J. & Fulkerson, W. & Gaddis, A.L. & Graham, R.L. & Graves, R.L. & Hopson, J.L. & Hughes, P. & Lapsa, M.V. & Mason, T.E. & Standaert, R.F. & Wilbanks, T.J. & Zu, 2010. "The importance of advancing technology to America's energy goals," Energy Policy, Elsevier, vol. 38(8), pages 3886-3890, August.
  46. Johannes Urpelainen, 2013. "Can strategic technology development improve climate cooperation? A game-theoretic analysis," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 18(6), pages 785-800, August.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.