IDEAS home Printed from https://ideas.repec.org/p/zbw/zewdip/7181.html
   My bibliography  Save this paper

A Note on Implementing Box-Cox Quantile Regression

Author

Listed:
  • Wilke, Ralf A.
  • Fitzenberger, Bernd
  • Zhang, Xuan

Abstract

The Box-Cox quantile regression model using the two stage method suggested by Chamberlain (1994) and Buchinsky (1995) provides a flexible and numerically attractive extension of linear quantile regression techniques. However, the objective function in stage two of the method may not exists. We suggest a simple modification of the estimator which is easy to implement. The modified estimator is still pn{consistent and we derive its asymptotic distribution. A simulation study confirms that the modified estimator works well in situations, where the original estimator is not well defined.

Suggested Citation

  • Wilke, Ralf A. & Fitzenberger, Bernd & Zhang, Xuan, 2005. "A Note on Implementing Box-Cox Quantile Regression," ZEW Discussion Papers 04-61 [rev.], ZEW - Leibniz Centre for European Economic Research.
  • Handle: RePEc:zbw:zewdip:7181
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/24695/1/dp0461.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Sims,Christopher A. (ed.), 1994. "Advances in Econometrics," Cambridge Books, Cambridge University Press, number 9780521444606, September.
    2. Fitzenberger, Bernd, 1998. "The moving blocks bootstrap and robust inference for linear least squares and quantile regressions," Journal of Econometrics, Elsevier, vol. 82(2), pages 235-287, February.
    3. Sims,Christopher A. (ed.), 1994. "Advances in Econometrics," Cambridge Books, Cambridge University Press, number 9780521444590, September.
    4. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    5. Jose A. F. Machado & Jose Mata, 2000. "Box-Cox quantile regression and the distribution of firm sizes," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(3), pages 253-274.
    6. Koenker, Roger & Park, Beum J., 1996. "An interior point algorithm for nonlinear quantile regression," Journal of Econometrics, Elsevier, vol. 71(1-2), pages 265-283.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ludsteck, Johannes & Jacobebbinghaus, Peter, 2005. "Strike activity and centralisation in wage setting," IAB-Discussion Paper 200522, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany].
    2. Bernd Fitzenberger & Ralf Wilke, 2006. "Using quantile regression for duration analysis," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 90(1), pages 105-120, March.
    3. Fitzenberger, Bernd & Wilke, Ralf A., 2007. "New insights on unemployment duration and post unemployment earnings in Germany: censored Box-Cox quantile regression at work," ZEW Discussion Papers 07-007, ZEW - Leibniz Centre for European Economic Research.
    4. Boockmann, Bernhard & Steffes, Susanne, 2007. "Seniority and Job Stability: A Quantile Regression Approach Using Matched Employer-Employee Data," ZEW Discussion Papers 07-014, ZEW - Leibniz Centre for European Economic Research.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bernd Fitzenberger & Ralf A. Wilke & Xuan Zhang, 2010. "Implementing Box-Cox Quantile Regression," Econometric Reviews, Taylor & Francis Journals, vol. 29(2), pages 158-181, April.
    2. Bilias, Yannis & Chen, Songnian & Ying, Zhiliang, 2000. "Simple resampling methods for censored regression quantiles," Journal of Econometrics, Elsevier, vol. 99(2), pages 373-386, December.
    3. Grace Hong, Hyokyoung, 2013. "A quantile approach to the power transformed location–scale model," Computational Statistics & Data Analysis, Elsevier, vol. 63(C), pages 50-62.
    4. Machado, José A.F. & Santos Silva, J.M.C. & Wei, Kehai, 2016. "Quantiles, corners, and the extensive margin of trade," European Economic Review, Elsevier, vol. 89(C), pages 73-84.
    5. Jose A. F. Machado & Jose Mata, 2000. "Box-Cox quantile regression and the distribution of firm sizes," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(3), pages 253-274.
    6. Roger Koenker, 2017. "Quantile regression 40 years on," CeMMAP working papers CWP36/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    7. Victor Chernozhukov & Iván Fernández‐Val & Blaise Melly, 2013. "Inference on Counterfactual Distributions," Econometrica, Econometric Society, vol. 81(6), pages 2205-2268, November.
    8. Michel Lubrano & Abdoul Aziz Junior Ndoye, 2014. "Bayesian Unconditional Quantile Regression: An Analysis of Recent Expansions in Wage Structure and Earnings Inequality in the US 1992–2009," Scottish Journal of Political Economy, Scottish Economic Society, vol. 61(2), pages 129-153, May.
    9. V L Miguéis & D F Benoit & D Van den Poel, 2013. "Enhanced decision support in credit scoring using Bayesian binary quantile regression," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 64(9), pages 1374-1383, September.
    10. Angel López-Nicolás & Jaume García & Pedro J. Hernández, 2001. "How wide is the gap? An investigation of gender wage differences using quantile regression," Empirical Economics, Springer, vol. 26(1), pages 149-167.
    11. Deshpande, Ashwini & Goel, Deepti & Khanna, Shantanu, 2018. "Bad Karma or Discrimination? Male–Female Wage Gaps Among Salaried Workers in India," World Development, Elsevier, vol. 102(C), pages 331-344.
    12. de la Rica, Sara & Dolado, Juan J. & Llorens, Vanesa, 2005. "Ceiling and Floors: Gender Wage Gaps by Education in Spain," IZA Discussion Papers 1483, Institute of Labor Economics (IZA).
    13. Richard Blundell & Amanda Gosling & Hidehiko Ichimura & Costas Meghir, 2007. "Changes in the Distribution of Male and Female Wages Accounting for Employment Composition Using Bounds," Econometrica, Econometric Society, vol. 75(2), pages 323-363, March.
    14. Chernozhukov, Victor & Hansen, Christian & Jansson, Michael, 2009. "Finite sample inference for quantile regression models," Journal of Econometrics, Elsevier, vol. 152(2), pages 93-103, October.
    15. Dasgupta, Sukti. & Bhula-or, Ruttiya. & Fakthong, Tiraphap., 2015. "Earnings differentials between formal and informal employment in Thailand," ILO Working Papers 994896403402676, International Labour Organization.
    16. Lucie Schmidt & Purvi Sevak, 2006. "Gender, Marriage, And Asset Accumulation In The United States," Feminist Economics, Taylor & Francis Journals, vol. 12(1-2), pages 139-166.
    17. Albrecht, James & van Vuuren, Aico & Vroman, Susan, 2009. "Counterfactual distributions with sample selection adjustments: Econometric theory and an application to the Netherlands," Labour Economics, Elsevier, vol. 16(4), pages 383-396, August.
    18. Daniel Pollmann & Thomas Dohmen & Franz Palm, 2020. "Robust Estimation of Wage Dispersion with Censored Data: An Application to Occupational Earnings Risk and Risk Attitudes," De Economist, Springer, vol. 168(4), pages 519-540, December.
    19. Qingjie Xia & Lina Song & Shi Li & Simon Appleton, 2014. "The effect of the state sector on wage inequality in urban China: 1988--2007," Journal of Chinese Economic and Business Studies, Taylor & Francis Journals, vol. 12(1), pages 29-45, February.
    20. Oka, Tatsushi & Qu, Zhongjun, 2011. "Estimating structural changes in regression quantiles," Journal of Econometrics, Elsevier, vol. 162(2), pages 248-267, June.

    More about this item

    Keywords

    Box-Cox quantile regression; iterative estimator;

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:zewdip:7181. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/zemande.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.