IDEAS home Printed from https://ideas.repec.org/p/zbw/zewdip/2347.html
   My bibliography  Save this paper

Measuring Sustainable Development: The Use of Computable General Equilibrium Models

Author

Listed:
  • Böhringer, Christoph
  • Löschel, Andreas

Abstract

This paper advocates computable general equilibrium models as a methodological tool that is particularly suitable for measuring the impacts of policy interference on the three dimensions of sustainable development, i.e. environmental quality, economic performance (gross efficiency) and equity. These dimensions are inherently intertwined and subject to trade-offs. Computable general equilibrium models can incorporate various important sustainable development indicators in a single consistent framework and allow for a systematic quantitative trade-off analysis.

Suggested Citation

  • Böhringer, Christoph & Löschel, Andreas, 2004. "Measuring Sustainable Development: The Use of Computable General Equilibrium Models," ZEW Discussion Papers 04-14, ZEW - Leibniz Centre for European Economic Research.
  • Handle: RePEc:zbw:zewdip:2347
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/24066/1/dp0414.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hertel, Thomas W., 2002. "Applied general equilibrium analysis of agricultural and resource policies," Handbook of Agricultural Economics, in: B. L. Gardner & G. C. Rausser (ed.), Handbook of Agricultural Economics, edition 1, volume 2, chapter 26, pages 1373-1419, Elsevier.
    2. Vennemo, Haakon, 1997. "A dynamic applied general equilibrium model with environmental feedbacks," Economic Modelling, Elsevier, vol. 14(1), pages 99-154, January.
    3. Goulder Lawrence H., 1995. "Effects of Carbon Taxes in an Economy with Prior Tax Distortions: An Intertemporal General Equilibrium Analysis," Journal of Environmental Economics and Management, Elsevier, vol. 29(3), pages 271-297, November.
    4. Goulder, Lawrence H. & Schneider, Stephen H., 1999. "Induced technological change and the attractiveness of CO2 abatement policies," Resource and Energy Economics, Elsevier, vol. 21(3-4), pages 211-253, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lorenza Campagnolo & Carlo Carraro & Marinella Davide & Fabio Eboli & Elisa Lanzi & Ramiro Parrado, 2016. "Can climate policy enhance sustainability?," Climatic Change, Springer, vol. 137(3), pages 639-653, August.
    2. Kurt Kratena & Michael Wüger, 2008. "Combining a Demand System with the Household Production Approach. Modelling Energy Demand in Selected European Countries," WIFO Working Papers 311, WIFO.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bohringer, Christoph & Loschel, Andreas, 2006. "Computable general equilibrium models for sustainability impact assessment: Status quo and prospects," Ecological Economics, Elsevier, vol. 60(1), pages 49-64, November.
    2. Conrad, Klaus, 2001. "Computable General equilibrium Models in Environmental and Resource Economics," Discussion Papers 601, Institut fuer Volkswirtschaftslehre und Statistik, Abteilung fuer Volkswirtschaftslehre.
    3. Michael Pflüger & Jens Südekum, 2005. "Die Neue Ökonomische Geographie und Effizienzgründe für Regionalpolitik," Vierteljahrshefte zur Wirtschaftsforschung / Quarterly Journal of Economic Research, DIW Berlin, German Institute for Economic Research, vol. 74(1), pages 26-46.
    4. Christoph Böhringer & Andreas Löschel, 2004. "Die Messung nachhaltiger Entwicklung mithilfe numerischer Gleichgewichtsmodelle," Vierteljahrshefte zur Wirtschaftsforschung / Quarterly Journal of Economic Research, DIW Berlin, German Institute for Economic Research, vol. 73(1), pages 31-52.
    5. Patrizio Lecca & Grant Allan & Peter McGregor & Kim Swales, 2013. "The Impact of the Introduction of a Carbon Tax for Scotland," ERSA conference papers ersa13p501, European Regional Science Association.
    6. Brita Bye & Snorre Kverndokk & Knut Rosendahl, 2002. "Mitigation costs, distributional effects, and ancillary benefits of carbon policies in the Nordic countries, the U.K., and Ireland," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 7(4), pages 339-366, December.
    7. Allan, Grant & Lecca, Patrizio & McGregor, Peter & Swales, Kim, 2014. "The economic and environmental impact of a carbon tax for Scotland: A computable general equilibrium analysis," Ecological Economics, Elsevier, vol. 100(C), pages 40-50.
    8. Bergman, Lars, 2005. "CGE Modeling of Environmental Policy and Resource Management," Handbook of Environmental Economics, in: K. G. Mäler & J. R. Vincent (ed.), Handbook of Environmental Economics, edition 1, volume 3, chapter 24, pages 1273-1306, Elsevier.
    9. Annegrete Bruvoll & Karin Ibenholt, 1998. "Green Throughput Taxation: Environmental and Economic Consequences," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 12(4), pages 387-401, December.
    10. Emanuele Massetti & Lea Nicita, 2010. "The Optimal Climate Policy Portfolio when Knowledge Spills across Sectors," CESifo Working Paper Series 2988, CESifo.
    11. Lawrence H. Goulder, 2013. "Markets for Pollution Allowances: What Are the (New) Lessons?," Journal of Economic Perspectives, American Economic Association, vol. 27(1), pages 87-102, Winter.
    12. Rosendahl, Knut Einar, 2004. "Cost-effective environmental policy: implications of induced technological change," Journal of Environmental Economics and Management, Elsevier, vol. 48(3), pages 1099-1121, November.
    13. Philippe Aghion & Antoine Dechezleprêtre & David Hémous & Ralf Martin & John Van Reenen, 2016. "Carbon Taxes, Path Dependency, and Directed Technical Change: Evidence from the Auto Industry," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 1-51.
    14. Perino, Grischa & Requate, Till, 2012. "Does more stringent environmental regulation induce or reduce technology adoption? When the rate of technology adoption is inverted U-shaped," Journal of Environmental Economics and Management, Elsevier, vol. 64(3), pages 456-467.
    15. Mort Webster & Karen Fisher-Vanden & David Popp & Nidhi Santen, 2017. "Should We Give Up after Solyndra? Optimal Technology R&D Portfolios under Uncertainty," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 4(S1), pages 123-151.
    16. Samuel Carrara & Giacomo Marangoni, 2013. "Non-CO2 greenhouse gas mitigation modeling with marginal abatement cost curv es: technical change, emission scenarios and policy costs," ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT, FrancoAngeli Editore, vol. 2013(1), pages 91-124.
    17. Julie Anne Cronin & Don Fullerton & Steven Sexton, 2019. "Vertical and Horizontal Redistributions from a Carbon Tax and Rebate," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 6(S1), pages 169-208.
    18. Massimiliano Mazzanti & Valeria Costantini & Susanna Mancinelli & Massimilano Corradini, 2011. "Environmental and Innovation Performance in a Dynamic Impure Public Good Framework," Working Papers 201117, University of Ferrara, Department of Economics.
    19. Stavins, Robert & Jaffe, Adam & Newell, Richard, 2000. "Technological Change and the Environment," Working Paper Series rwp00-002, Harvard University, John F. Kennedy School of Government.

    More about this item

    Keywords

    computable general equilibrium modeling (CGE); sustainability impact assessment (SIA); sustainable development (SD);
    All these keywords.

    JEL classification:

    • D58 - Microeconomics - - General Equilibrium and Disequilibrium - - - Computable and Other Applied General Equilibrium Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:zewdip:2347. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/zemande.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.