IDEAS home Printed from https://ideas.repec.org/p/zbw/wzbmdn/spii2016502.html
   My bibliography  Save this paper

Economic recommendation with surplus maximization

Author

Listed:
  • Zhang, Yongfeng
  • Zhao, Qi
  • Zhang, Yi
  • Friedman, Daniel
  • Zhang, Min
  • Liu, Yiqun
  • Ma, Shaoping

Abstract

A prime function of many major World Wide Web applications is Online Service Allocation (OSA), the function of matching individual consumers with particular services/goods (which may include loans or jobs as well as products) each with its own producer. In the applications of interest, consumers are free to choose, so OSA usually takes the form of personalized recommendation or search in practice. The performance metrics of recommender and search systems currently tend to focus on just one side of the match, in some cases the consumers (e.g. satisfaction) and in other cases the producers (e.g., profit). However, a sustainable OSA platform needs benefit both consumers and producers; otherwise the neglected party eventually may stop using it. In this paper, we show how to adapt economists' traditional idea of maximizing total surplus (the sum of consumer net benefit and producer profit) to the heterogeneous world of online service allocation, in an effort to promote the web intelligence for social good in online eco-systems. Modifications of traditional personalized recommendation algorithms enable us to apply Total Surplus Maximization (TSM) to three very different types of real-world tasks - e-commerce, P2P lending and freelancing. The results for all three tasks suggest that TSM compares very favorably to currently popular approaches, to the benefit of both producers and consumers.

Suggested Citation

  • Zhang, Yongfeng & Zhao, Qi & Zhang, Yi & Friedman, Daniel & Zhang, Min & Liu, Yiqun & Ma, Shaoping, 2016. "Economic recommendation with surplus maximization," Discussion Papers, Research Professorship Market Design: Theory and Pragmatics SP II 2016-502, WZB Berlin Social Science Center.
  • Handle: RePEc:zbw:wzbmdn:spii2016502
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/142710/1/862234069.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Daniel D. Lee & H. Sebastian Seung, 1999. "Learning the parts of objects by non-negative matrix factorization," Nature, Nature, vol. 401(6755), pages 788-791, October.
    2. Eric S. Maskin, 2008. "Mechanism Design: How to Implement Social Goals," American Economic Review, American Economic Association, vol. 98(3), pages 567-576, June.
    3. Kaplan, Andreas M. & Haenlein, Michael, 2010. "Users of the world, unite! The challenges and opportunities of Social Media," Business Horizons, Elsevier, vol. 53(1), pages 59-68, January.
    4. Currie, John Martin & Murphy, John A & Schmitz, Andrew, 1971. "The Concept of Economic Surplus and its Use in Economic Analysis," Economic Journal, Royal Economic Society, vol. 81(324), pages 741-799, December.
    5. Daniel Friedman & József Sákovics, 2015. "Tractable consumer choice," Theory and Decision, Springer, vol. 79(2), pages 333-358, September.
    6. Borgers, Tilman & Krahmer, Daniel & Strausz, Roland, 2015. "An Introduction to the Theory of Mechanism Design," OUP Catalogue, Oxford University Press, number 9780199734023.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Yongfeng & Zhang, Yi & Friedman, Daniel, 2017. "Economic recommendation based on pareto efficient resource allocation," Discussion Papers, Research Professorship Market Design: Theory and Pragmatics SP II 2017-503, WZB Berlin Social Science Center.
    2. Molle, François & Tanouti, Oumaima, 2017. "Squaring the circle: Agricultural intensification vs. water conservation in Morocco," Agricultural Water Management, Elsevier, vol. 192(C), pages 170-179.
    3. Srivastava, Abhishek & Bala, Pradip Kumar & Kumar, Bipul, 2020. "New perspectives on gray sheep behavior in E-commerce recommendations," Journal of Retailing and Consumer Services, Elsevier, vol. 53(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fan, Rui & Xu, Ke & Zhao, Jichang, 2018. "An agent-based model for emotion contagion and competition in online social media," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 495(C), pages 245-259.
    2. Nour El Houda Ben Amor & Mohamed Nabil Mzoughi, 2023. "Do Millennials’ Motives for Using Snapchat Influence the Effectiveness of Snap Ads?," SAGE Open, , vol. 13(3), pages 21582440231, July.
    3. Schmidt, Christoph G. & Wuttke, David A. & Heese, H. Sebastian & Wagner, Stephan M., 2023. "Antecedents of public reactions to supply chain glitches," International Journal of Production Economics, Elsevier, vol. 259(C).
    4. Del Corso, Gianna M. & Romani, Francesco, 2019. "Adaptive nonnegative matrix factorization and measure comparisons for recommender systems," Applied Mathematics and Computation, Elsevier, vol. 354(C), pages 164-179.
    5. P Fogel & C Geissler & P Cotte & G Luta, 2022. "Applying separative non-negative matrix factorization to extra-financial data," Working Papers hal-03689774, HAL.
    6. Mahan, Joseph E. & Seo, Won Jae & Jordan, Jeremy S. & Funk, Daniel, 2015. "Exploring the impact of social networking sites on running involvement, running behavior, and social life satisfaction," Sport Management Review, Elsevier, vol. 18(2), pages 182-192.
    7. Xiao-Bai Li & Jialun Qin, 2017. "Anonymizing and Sharing Medical Text Records," Information Systems Research, INFORMS, vol. 28(2), pages 332-352, June.
    8. Molina, Arturo & Fernández, Alejandra C. & Gómez, Mar & Aranda, Evangelina, 2017. "Differences in the city branding of European capitals based on online vs. offline sources of information," Tourism Management, Elsevier, vol. 58(C), pages 28-39.
    9. Carmela Milano, 2015. "Democratization or else vulgarization of cultural capital? The role of social networks in theater’s audience behavior," Working Papers CEB 15-004, ULB -- Universite Libre de Bruxelles.
    10. Yucheng Zhang & Zhiling Wang & Lin Xiao & Lijun Wang & Pei Huang, 2023. "Discovering the evolution of online reviews: A bibliometric review," Electronic Markets, Springer;IIM University of St. Gallen, vol. 33(1), pages 1-22, December.
    11. Hassan Danaeefard & Ali Farazmand & Akram Dastyari, 2023. "The Iranian Coronavirus Pandemic (COVID-9) Crisismanship: Understanding the Contributions of National Culture, Media, Technology and Economic System," Public Organization Review, Springer, vol. 23(4), pages 1661-1682, December.
    12. Richey, Michelle & Ravishankar, M.N., 2019. "The role of frames and cultural toolkits in establishing new connections for social media innovation," Technological Forecasting and Social Change, Elsevier, vol. 144(C), pages 325-333.
    13. Jamal El-Den & Pratap Adikhari & Pratap Adikhari, 2017. "Social media in the service of social entrepreneurship: Identifying factors for better services," Journal of Advances in Humanities and Social Sciences, Dr. Yi-Hsing Hsieh, vol. 3(2), pages 105-114.
    14. Smith, Andrew N. & Fischer, Eileen & Yongjian, Chen, 2012. "How Does Brand-related User-generated Content Differ across YouTube, Facebook, and Twitter?," Journal of Interactive Marketing, Elsevier, vol. 26(2), pages 102-113.
    15. Bo Yang & Chao Liu & Xusen Cheng & Xi Ma, 2022. "Understanding Users' Group Behavioral Decisions About Sharing Articles in Social Media: An Elaboration Likelihood Model Perspective," Group Decision and Negotiation, Springer, vol. 31(4), pages 819-842, August.
    16. Gal-Tzur, Ayelet & Grant-Muller, Susan M. & Kuflik, Tsvi & Minkov, Einat & Nocera, Silvio & Shoor, Itay, 2014. "The potential of social media in delivering transport policy goals," Transport Policy, Elsevier, vol. 32(C), pages 115-123.
    17. Fathey Mohammed & Nabil Hasan Al-Kumaim & Ahmed Ibrahim Alzahrani & Yousef Fazea, 2023. "The Impact of Social Media Shared Health Content on Protective Behavior against COVID-19," IJERPH, MDPI, vol. 20(3), pages 1-16, January.
    18. Fazal Ur Rehman & Rosman Bin Md Yusoff & Fadillah Binti Ismail & Farwida Javed, 2019. "What is Brand? Some Insights in the Historical Development," Information Management and Business Review, AMH International, vol. 10(4), pages 8-13.
    19. Anil Aswani & Zuo-Jun Max Shen & Auyon Siddiq, 2019. "Data-Driven Incentive Design in the Medicare Shared Savings Program," Operations Research, INFORMS, vol. 67(4), pages 1002-1026, July.
    20. Drummond, Conor & O'Toole, Thomas & McGrath, Helen, 2022. "Social Media resourcing of an entrepreneurial firm network: Collaborative mobilisation processes," Journal of Business Research, Elsevier, vol. 145(C), pages 171-187.

    More about this item

    Keywords

    Total Surplus Maximization; Online Service Allocation; Computational Economics; Recommendation Systems; Web-based Services;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:wzbmdn:spii2016502. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/wzbbbde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.