IDEAS home Printed from https://ideas.repec.org/p/zbw/wuprep/22.html
   My bibliography  Save this paper

Wege in eine ökologische Machine Economy: Wir brauchen eine 'Grüne Governance der Machine Economy', um das Zusammenspiel von Internet of Things, Künstlicher Intelligenz und Distributed Ledger Technology ökologisch zu gestalten

Author

Listed:
  • Wurm, Daniel
  • Zielinski, Oliver
  • Lübben, Neeske
  • Jansen, Maike
  • Ramesohl, Stephan

Abstract

Im Zeitalter der Machine Economy ist der maschinelle Dialog allgegenwärtig - das bietet neue Chancen für Nachhaltigkeit, erhöht gleichzeitig aber durch die zugrundeliegenden Technologien auch den Druck auf unsere Umwelt. Internet of Things (IoT), Künstliche Intelligenz (KI) und Distributed Ledger Technology (DLT) sind das technologische Fundament der Machine Economy. Damit verbunden sind Infrastrukturen, Datenströme und Anwendungen, die hohe Energie- sowie Ressourcenaufwände erzeugen. Der derzeitige politische Diskurs sowie die Nachhaltigkeitsforschung fokussieren sich auf Umweltwirkungen durch digitale Infrastrukturen. Daten, Applikationen sowie die Rolle von Akteuren als Treiber der Umweltwirkung werden zu wenig beleuchtet. In diesem Papier sprechen wir uns für eine 'Grüne Governance der Machine Economy' aus. Adressiert werden Annahmen zu systemübergreifenden Treibern von Umweltbelastungen und ihrer Wirkung. Ziel ist es, ein Gesamtsystem nachhaltiger Entscheidungen und ein ökologisches Zusammenspiel aller beteiligten Technologien in der Wertschöpfung zu ermöglichen. Zukünftige Forschung soll die hier vorgestellten Hypothesen weiter ausarbeiten und konkrete Handlungsoptionen für eine Stakeholder übergreifende Roadmap erarbeiten.

Suggested Citation

  • Wurm, Daniel & Zielinski, Oliver & Lübben, Neeske & Jansen, Maike & Ramesohl, Stephan, 2021. "Wege in eine ökologische Machine Economy: Wir brauchen eine 'Grüne Governance der Machine Economy', um das Zusammenspiel von Internet of Things, Künstlicher Intelligenz und Distributed Ledger Technolo," Wuppertal Reports 22, Wuppertal Institute for Climate, Environment and Energy.
  • Handle: RePEc:zbw:wuprep:22
    DOI: 10.48506/opus-7828
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/242845/1/1771053402.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.48506/opus-7828?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ricardo Vinuesa & Hossein Azizpour & Iolanda Leite & Madeline Balaam & Virginia Dignum & Sami Domisch & Anna Felländer & Simone Daniela Langhans & Max Tegmark & Francesco Fuso Nerini, 2020. "The role of artificial intelligence in achieving the Sustainable Development Goals," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    2. Stefan Naumann & Achim Guldner & Eva Kern, 2021. "The Eco-label Blue Angel for Software—Development and Components," Progress in IS, in: Andreas Kamilaris & Volker Wohlgemuth & Kostas Karatzas & Ioannis N. Athanasiadis (ed.), Advances and New Trends in Environmental Informatics, pages 79-89, Springer.
    3. Rogge, Karoline S. & Reichardt, Kristin, 2016. "Policy mixes for sustainability transitions: An extended concept and framework for analysis," Research Policy, Elsevier, vol. 45(8), pages 1620-1635.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boncinelli, Fabio & Bartolini, Fabio & Casini, Leonardo, 2018. "Structural factors of labour allocation for farm diversification activities," Land Use Policy, Elsevier, vol. 71(C), pages 204-212.
    2. Henrik Skaug Sætra, 2021. "AI in Context and the Sustainable Development Goals: Factoring in the Unsustainability of the Sociotechnical System," Sustainability, MDPI, vol. 13(4), pages 1-19, February.
    3. Xi Liu & Yugang He & Renhong Wu, 2024. "Revolutionizing Environmental Sustainability: The Role of Renewable Energy Consumption and Environmental Technologies in OECD Countries," Energies, MDPI, vol. 17(2), pages 1-21, January.
    4. Caloffi, Annalisa & Freo, Marzia & Ghinoi, Stefano & Mariani, Marco & Rossi, Federica, 2022. "Assessing the effects of a deliberate policy mix: The case of technology and innovation advisory services and innovation vouchers," Research Policy, Elsevier, vol. 51(6).
    5. Jinyi Li & Zhen Liu & Guizhong Han & Peter Demian & Mohamed Osmani, 2024. "The Relationship Between Artificial Intelligence (AI) and Building Information Modeling (BIM) Technologies for Sustainable Building in the Context of Smart Cities," Sustainability, MDPI, vol. 16(24), pages 1-38, December.
    6. Gianluca MISURACA & Colin van Noordt, 2020. "AI Watch - Artificial Intelligence in public services: Overview of the use and impact of AI in public services in the EU," JRC Research Reports JRC120399, Joint Research Centre.
    7. Martins, Flavio Pinheiro & De-León Almaraz, Sofía & Botelho Junior, Amilton Barbosa & Azzaro-Pantel, Catherine & Parikh, Priti, 2024. "Hydrogen and the sustainable development goals: Synergies and trade-offs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 204(C).
    8. Frank, Alejandro Germán & Gerstlberger, Wolfgang & Paslauski, Carolline Amaral & Lerman, Laura Visintainer & Ayala, Néstor Fabián, 2018. "The contribution of innovation policy criteria to the development of local renewable energy systems," Energy Policy, Elsevier, vol. 115(C), pages 353-365.
    9. Daniel Béland & Michael Howlett & Philip Rocco & Alex Waddan, 2020. "Designing policy resilience: lessons from the Affordable Care Act," Policy Sciences, Springer;Society of Policy Sciences, vol. 53(2), pages 269-289, June.
    10. Fabian Dvorak & Regina Stumpf & Sebastian Fehrler & Urs Fischbacher, 2024. "Generative AI Triggers Welfare-Reducing Decisions in Humans," Papers 2401.12773, arXiv.org.
    11. Sampsa Hyysalo & Jani Lukkarinen & Paula Kivimaa & Raimo Lovio & Armi Temmes & Mikael Hildén & Tatu Marttila & Karoliina Auvinen & Sofi Perikangas & Allu Pyhälammi & Janne Peljo & Kaisa Savolainen & L, 2019. "Developing Policy Pathways: Redesigning Transition Arenas for Mid-range Planning," Sustainability, MDPI, vol. 11(3), pages 1-22, January.
    12. Sergio Genovesi & Julia Maria Mönig, 2022. "Acknowledging Sustainability in the Framework of Ethical Certification for AI," Sustainability, MDPI, vol. 14(7), pages 1-10, March.
    13. Tan Yigitcanlar & Rashid Mehmood & Juan M. Corchado, 2021. "Green Artificial Intelligence: Towards an Efficient, Sustainable and Equitable Technology for Smart Cities and Futures," Sustainability, MDPI, vol. 13(16), pages 1-14, August.
    14. Wang, Weilong & Xiao, Deheng & Wang, Jianlong & Wu, Haitao, 2024. "The cost of pollution in the digital era: Impediments of air pollution on enterprise digital transformation," Energy Economics, Elsevier, vol. 134(C).
    15. Kim, Myung Ja & Hall, C. Michael & Kwon, Ohbyung & Sohn, Kwonsang, 2024. "Space tourism: Value-attitude-behavior theory, artificial intelligence, and sustainability," Journal of Retailing and Consumer Services, Elsevier, vol. 77(C).
    16. ODEH, Joseph PhD, 2024. "Exploring AI Applications to Foster Healthy Shopping Habits in Nigerian Retail," International Journal of Research and Innovation in Social Science, International Journal of Research and Innovation in Social Science (IJRISS), vol. 8(3s), pages 5382-5393, November.
    17. Nina Savela & Jarkko Levänen & Sara Lindeman & Nnenesi Kgabi & Heikki Koivisto & Meri Olenius & Samuel John & Damas Mashauri & Minna M. Keinänen-Toivola, 2020. "Rapid Urbanization and Infrastructure Pressure: Comparing the Sustainability Transition Potential of Water and Energy Regimes in Namibia," World, MDPI, vol. 1(2), pages 1-18, July.
    18. Chunhong Sheng & Yun Cao & Bing Xue, 2018. "Residential Energy Sustainability in China and Germany: The Impact of National Energy Policy System," Sustainability, MDPI, vol. 10(12), pages 1-18, December.
    19. Borozan, Dj, 2022. "Detecting a structure in the European energy transition policy instrument mix: What mix successfully drives the energy transition?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    20. Bjerkan, Kristin Ystmark & Seter, Hanne, 2021. "Policy and politics in energy transitions. A case study on shore power in Oslo," Energy Policy, Elsevier, vol. 153(C).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:wuprep:22. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/wikuede.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.