IDEAS home Printed from https://ideas.repec.org/p/zbw/vfsc22/264071.html
   My bibliography  Save this paper

Identifying Proxy VARs with Restrictions on the Forecast Error Variance

Author

Listed:
  • Härtl, Tilmann

Abstract

No abstract is available for this item.

Suggested Citation

  • Härtl, Tilmann, 2022. "Identifying Proxy VARs with Restrictions on the Forecast Error Variance," VfS Annual Conference 2022 (Basel): Big Data in Economics 264071, Verein für Socialpolitik / German Economic Association.
  • Handle: RePEc:zbw:vfsc22:264071
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/264071/1/vfs-2022-pid-70068.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. N. Bloom, 2016. "Fluctuations in uncertainty," Voprosy Ekonomiki, NP Voprosy Ekonomiki, issue 4.
    2. Karel Mertens & Morten O. Ravn, 2013. "The Dynamic Effects of Personal and Corporate Income Tax Changes in the United States," American Economic Review, American Economic Association, vol. 103(4), pages 1212-1247, June.
    3. Sungbae An & Frank Schorfheide, 2007. "Bayesian Analysis of DSGE Models—Rejoinder," Econometric Reviews, Taylor & Francis Journals, vol. 26(2-4), pages 211-219.
    4. Montiel Olea, José Luis & Nesbit, James, 2021. "(Machine) learning parameter regions," Journal of Econometrics, Elsevier, vol. 222(1), pages 716-744.
    5. Barsky, Robert B. & Sims, Eric R., 2011. "News shocks and business cycles," Journal of Monetary Economics, Elsevier, vol. 58(3), pages 273-289.
    6. Brüggemann, Ralf & Jentsch, Carsten & Trenkler, Carsten, 2016. "Inference in VARs with conditional heteroskedasticity of unknown form," Journal of Econometrics, Elsevier, vol. 191(1), pages 69-85.
    7. Caldara, Dario & Fuentes-Albero, Cristina & Gilchrist, Simon & Zakrajšek, Egon, 2016. "The macroeconomic impact of financial and uncertainty shocks," European Economic Review, Elsevier, vol. 88(C), pages 185-207.
    8. Neville Francis & Michael T. Owyang & Jennifer E. Roush & Riccardo DiCecio, 2014. "A Flexible Finite-Horizon Alternative to Long-Run Restrictions with an Application to Technology Shocks," The Review of Economics and Statistics, MIT Press, vol. 96(4), pages 638-647, October.
    9. Alessandri, Piergiorgio & Mumtaz, Haroon, 2019. "Financial regimes and uncertainty shocks," Journal of Monetary Economics, Elsevier, vol. 101(C), pages 31-46.
    10. Christina D. Romer & David H. Romer, 2010. "The Macroeconomic Effects of Tax Changes: Estimates Based on a New Measure of Fiscal Shocks," American Economic Review, American Economic Association, vol. 100(3), pages 763-801, June.
    11. Ivana Komunjer & Serena Ng, 2011. "Dynamic Identification of Dynamic Stochastic General Equilibrium Models," Econometrica, Econometric Society, vol. 79(6), pages 1995-2032, November.
    12. Carsten Jentsch & Kurt G. Lunsford, 2022. "Asymptotically Valid Bootstrap Inference for Proxy SVARs," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(4), pages 1876-1891, October.
    13. Bassett, William F. & Chosak, Mary Beth & Driscoll, John C. & Zakrajšek, Egon, 2014. "Changes in bank lending standards and the macroeconomy," Journal of Monetary Economics, Elsevier, vol. 62(C), pages 23-40.
    14. Nadav Ben Zeev & Evi Pappa, 2017. "Chronicle of a War Foretold: The Macroeconomic Effects of Anticipated Defence Spending Shocks," Economic Journal, Royal Economic Society, vol. 127(603), pages 1568-1597, August.
    15. Michele Piffer & Maximilian Podstawski, 2018. "Identifying Uncertainty Shocks Using the Price of Gold," Economic Journal, Royal Economic Society, vol. 128(616), pages 3266-3284, December.
    16. Minchul Shin & Molin Zhong, 2020. "A New Approach to Identifying the Real Effects of Uncertainty Shocks," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(2), pages 367-379, April.
    17. Sungbae An & Frank Schorfheide, 2007. "Bayesian Analysis of DSGE Models," Econometric Reviews, Taylor & Francis Journals, vol. 26(2-4), pages 113-172.
    18. Faust, Jon, 1998. "The robustness of identified VAR conclusions about money," Carnegie-Rochester Conference Series on Public Policy, Elsevier, vol. 49(1), pages 207-244, December.
    19. Kilian,Lutz & Lütkepohl,Helmut, 2018. "Structural Vector Autoregressive Analysis," Cambridge Books, Cambridge University Press, number 9781107196575, October.
    20. Harald Uhlig, 2004. "What moves GNP?," Econometric Society 2004 North American Winter Meetings 636, Econometric Society.
    21. Harald Uhlig, 2004. "Do Technology Shocks Lead to a Fall in Total Hours Worked?," Journal of the European Economic Association, MIT Press, vol. 2(2-3), pages 361-371, 04/05.
    22. Christiane Baumeister & James D. Hamilton, 2015. "Sign Restrictions, Structural Vector Autoregressions, and Useful Prior Information," Econometrica, Econometric Society, vol. 83(5), pages 1963-1999, September.
    23. Simon Gilchrist & Egon Zakrajsek, 2012. "Credit Spreads and Business Cycle Fluctuations," American Economic Review, American Economic Association, vol. 102(4), pages 1692-1720, June.
    24. Carsten Jentsch & Kurt G. Lunsford, 2019. "The Dynamic Effects of Personal and Corporate Income Tax Changes in the United States: Comment," American Economic Review, American Economic Association, vol. 109(7), pages 2655-2678, July.
    25. Nadav Ben Zeev & Evi Pappa, 2017. "Chronicle of a War Foretold: The Macroeconomic Effects of Anticipated Defence Spending Shocks," Economic Journal, Royal Economic Society, vol. 127(603), pages 1568-1597, August.
    26. Raffaella Giacomini, 2013. "The relationship between DSGE and VAR models," CeMMAP working papers CWP21/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    27. James H. Stock & Mark W. Watson, 2012. "Disentangling the Channels of the 2007-2009 Recession," NBER Working Papers 18094, National Bureau of Economic Research, Inc.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michele Piffer & Maximilian Podstawski, 2018. "Identifying Uncertainty Shocks Using the Price of Gold," Economic Journal, Royal Economic Society, vol. 128(616), pages 3266-3284, December.
    2. Ramey, V.A., 2016. "Macroeconomic Shocks and Their Propagation," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 71-162, Elsevier.
    3. Piergiorgio Alessandri & Andrea Gazzani & Alejandro Vicondoa, 2021. "The real effects of financial uncertainty shocks: A daily identification approach," Working Papers 61, Red Nacional de Investigadores en Economía (RedNIE).
    4. Danilo Cascaldi-Garcia, 2022. "Forecast Revisions as Instruments for News Shocks," International Finance Discussion Papers 1341, Board of Governors of the Federal Reserve System (U.S.).
    5. Danilo Cascaldi‐Garcia & Ana Beatriz Galvao, 2021. "News and Uncertainty Shocks," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 53(4), pages 779-811, June.
    6. Ansgar Belke & Steffen Elstner & Svetlana Rujin, 2022. "Growth Prospects and the Trade Balance in Advanced Economies," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 84(5), pages 1209-1234, October.
    7. Andrea Gazzani & Alejandro Vicondoa, 2020. "Bridge Proxy-SVAR: estimating the macroeconomic effects of shocks identified at high-frequency," Temi di discussione (Economic working papers) 1274, Bank of Italy, Economic Research and International Relations Area.
    8. Altavilla, Carlo & Pariès, Matthieu Darracq & Nicoletti, Giulio, 2019. "Loan supply, credit markets and the euro area financial crisis," Journal of Banking & Finance, Elsevier, vol. 109(C).
    9. Nadav Ben Zeev, 2019. "Is There A Single Shock That Drives The Majority Of Business Cycle Fluctuations?," Working Papers 1906, Ben-Gurion University of the Negev, Department of Economics.
    10. Olli Palm'en, 2022. "Macroeconomic Effect of Uncertainty and Financial Shocks: a non-Gaussian VAR approach," Papers 2202.10834, arXiv.org.
    11. Bruns, Martin & Lütkepohl, Helmut, 2024. "Heteroskedastic proxy vector autoregressions: An identification-robust test for time-varying impulse responses in the presence of multiple proxies," Journal of Economic Dynamics and Control, Elsevier, vol. 161(C).
    12. Helmut Lütkepohl & Thore Schlaak, 2022. "Heteroscedastic Proxy Vector Autoregressions," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(3), pages 1268-1281, June.
    13. Alessandri, Piergiorgio & Gazzani, Andrea & Vicondoa, Alejandro, 2023. "Are the effects of uncertainty shocks big or small?," European Economic Review, Elsevier, vol. 158(C).
    14. Caldara, Dario & Fuentes-Albero, Cristina & Gilchrist, Simon & Zakrajšek, Egon, 2016. "The macroeconomic impact of financial and uncertainty shocks," European Economic Review, Elsevier, vol. 88(C), pages 185-207.
    15. Martin Bruns & Helmut Lütkepohl, 2023. "An Alternative Bootstrap for Proxy Vector Autoregressions," Computational Economics, Springer;Society for Computational Economics, vol. 62(4), pages 1857-1882, December.
    16. Caggiano, Giovanni & Castelnuovo, Efrem & Delrio, Silvia & Kima, Richard, 2021. "Financial uncertainty and real activity: The good, the bad, and the ugly," European Economic Review, Elsevier, vol. 136(C).
    17. Giovanni Angelini & Luca Fanelli, 2019. "Exogenous uncertainty and the identification of structural vector autoregressions with external instruments," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(6), pages 951-971, September.
    18. Michael Ryan, 2020. "A Narrative Approach to Creating Instruments with Unstructured and Voluminous Text: An Application to Policy Uncertainty," Working Papers in Economics 20/10, University of Waikato.
    19. Georgiadis, Georgios & Müller, Gernot J. & Schumann, Ben, 2024. "Global risk and the dollar," Journal of Monetary Economics, Elsevier, vol. 144(C).
    20. Bacchiocchi, Emanuele & Dragomirescu-Gaina, Catalin, 2024. "Uncertainty spill-overs: When policy and financial realms overlap," Journal of International Money and Finance, Elsevier, vol. 143(C).

    More about this item

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:vfsc22:264071. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/vfsocea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.