IDEAS home Printed from https://ideas.repec.org/p/zbw/ucdpse/907.html
   My bibliography  Save this paper

Dependence of stock returns in bull and bear markets

Author

Listed:
  • Dobrić, Jadran
  • Frahm, Gabriel
  • Schmid, Friedrich

Abstract

Pearson's correlation coefficient is typically used for measuring the dependence structure of stock returns. Nevertheless, it has many shortcomings often documented in the literature. We suggest to use a conditional version of Spearman's rho as an alternative dependence measure. Our approach is purely nonparametric and we avoid any kind of model misspecification. We derive hypothesis tests for the conditional Spearman's rho in bull andbearmarkets and verify the tests by Monte Carlo simulation.Further, we study the daily returns of stocks contained in the German stock index DAX 30. We find some significant differences in dependence of stock returns in bull and bear markets. On the other hand the differences are not so strong as one might expect.

Suggested Citation

  • Dobrić, Jadran & Frahm, Gabriel & Schmid, Friedrich, 2007. "Dependence of stock returns in bull and bear markets," Discussion Papers in Econometrics and Statistics 9/07, University of Cologne, Institute of Econometrics and Statistics.
  • Handle: RePEc:zbw:ucdpse:907
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/44942/1/60870220X.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. P. Silvapulle & C. W. J. Granger, 2001. "Large returns, conditional correlation and portfolio diversification: a value-at-risk approach," Quantitative Finance, Taylor & Francis Journals, vol. 1(5), pages 542-551.
    2. Frahm, Gabriel & Junker, Markus & Szimayer, Alexander, 2003. "Elliptical copulas: applicability and limitations," Statistics & Probability Letters, Elsevier, vol. 63(3), pages 275-286, July.
    3. Andrew J. Patton, 2004. "On the Out-of-Sample Importance of Skewness and Asymmetric Dependence for Asset Allocation," Journal of Financial Econometrics, Oxford University Press, vol. 2(1), pages 130-168.
    4. Ines Fortin & Christoph Kuzmics, 2002. "Tail‐dependence in stock‐return pairs," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 11(2), pages 89-107, April.
    5. Frahm, Gabriel & Junker, Markus & Schmidt, Rafael, 2005. "Estimating the tail-dependence coefficient: Properties and pitfalls," Insurance: Mathematics and Economics, Elsevier, vol. 37(1), pages 80-100, August.
    6. Beatriz Vaz de Melo Mendes, 2005. "Asymmetric extreme interdependence in emerging equity markets," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 21(6), pages 483-498, November.
    7. Markus Junker & Angelika May, 2005. "Measurement of aggregate risk with copulas," Econometrics Journal, Royal Economic Society, vol. 8(3), pages 428-454, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fabrizio Durante & Roberta Pappadà & Nicola Torelli, 2014. "Clustering of financial time series in risky scenarios," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 8(4), pages 359-376, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dobric Jadran & Frahm Gabriel & Schmid Friedrich, 2013. "Dependence of Stock Returns in Bull and Bear Markets," Dependence Modeling, De Gruyter, vol. 1(2013), pages 94-110, December.
    2. Sleire, Anders D. & Støve, Bård & Otneim, Håkon & Berentsen, Geir Drage & Tjøstheim, Dag & Haugen, Sverre Hauso, 2022. "Portfolio allocation under asymmetric dependence in asset returns using local Gaussian correlations," Finance Research Letters, Elsevier, vol. 46(PB).
    3. Sancetta, A., 2005. "Copula Based Monte Carlo Integration in Financial Problems," Cambridge Working Papers in Economics 0506, Faculty of Economics, University of Cambridge.
    4. Lombardi, Marco J. & Veredas, David, 2009. "Indirect estimation of elliptical stable distributions," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2309-2324, April.
    5. Tjøstheim, Dag & Hufthammer, Karl Ove, 2013. "Local Gaussian correlation: A new measure of dependence," Journal of Econometrics, Elsevier, vol. 172(1), pages 33-48.
    6. Rubén Loaiza‐Maya & Michael S. Smith & Worapree Maneesoonthorn, 2018. "Time series copulas for heteroskedastic data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(3), pages 332-354, April.
    7. Mendes, Beatriz Vaz de Melo & Arslan, Olcay, 2006. "Multivariate Skew Distributions Based on the GT-Copula," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 26(2), November.
    8. Cerrato, Mario & Crosby, John & Kim, Minjoo & Zhao, Yang, 2015. "US Monetary and Fiscal Policies - Conflict or Cooperation?," SIRE Discussion Papers 2015-78, Scottish Institute for Research in Economics (SIRE).
    9. Dobric, Jadran & Schmid, Friedrich, 2007. "A goodness of fit test for copulas based on Rosenblatt's transformation," Computational Statistics & Data Analysis, Elsevier, vol. 51(9), pages 4633-4642, May.
    10. Chabi-Yo, Fousseni & Ruenzi, Stefan & Weigert, Florian, 2018. "Crash Sensitivity and the Cross Section of Expected Stock Returns," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 53(3), pages 1059-1100, June.
    11. Matthieu Garcin & Maxime L. D. Nicolas, 2021. "Nonparametric estimator of the tail dependence coefficient: balancing bias and variance," Papers 2111.11128, arXiv.org, revised Jul 2023.
    12. Manner, H., 2007. "Estimation and model selection of copulas with an application to exchange rates," Research Memorandum 056, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    13. Ruenzi, Stefan & Ungeheuer, Michael & Weigert, Florian, 2020. "Joint Extreme events in equity returns and liquidity and their cross-sectional pricing implications," Journal of Banking & Finance, Elsevier, vol. 115(C).
    14. Patton, Andrew, 2013. "Copula Methods for Forecasting Multivariate Time Series," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 899-960, Elsevier.
    15. Cerrato, Mario & Crosby, John & Kim, Minjoo & Zhao, Yang, 2015. "US Monetary and Fiscal Policies - Conflict or Cooperation?," 2007 Annual Meeting, July 29-August 1, 2007, Portland, Oregon TN 2015-78, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    16. Genest, Christian & Rémillard, Bruno & Beaudoin, David, 2009. "Goodness-of-fit tests for copulas: A review and a power study," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 199-213, April.
    17. Smith, Michael Stanley, 2015. "Copula modelling of dependence in multivariate time series," International Journal of Forecasting, Elsevier, vol. 31(3), pages 815-833.
    18. Frahm, Gabriel & Jaekel, Uwe, 2007. "Tyler's M-estimator, random matrix theory, and generalized elliptical distributions with applications to finance," Discussion Papers in Econometrics and Statistics 2/07, University of Cologne, Institute of Econometrics and Statistics.
    19. Okhrin, Ostap & Okhrin, Yarema & Schmid, Wolfgang, 2013. "On the structure and estimation of hierarchical Archimedean copulas," Journal of Econometrics, Elsevier, vol. 173(2), pages 189-204.
    20. Adlane Haffar & Éric Le Fur, 2022. "Dependence structure of CAT bonds and portfolio diversification: a copula-GARCH approach," Journal of Asset Management, Palgrave Macmillan, vol. 23(4), pages 297-309, July.

    More about this item

    Keywords

    bear market; bootstrapping; bull market; conditional Spearman's rho; copulas; Monte Carlo simulation; stock returns;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:ucdpse:907. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/sxkoede.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.