IDEAS home Printed from https://ideas.repec.org/a/vrs/demode/v1y2013ip94-110n5.html
   My bibliography  Save this article

Dependence of Stock Returns in Bull and Bear Markets

Author

Listed:
  • Dobric Jadran

    (Credit Risk Control, WGZ BANK AG, Düsseldorf, Germany)

  • Frahm Gabriel

    (Chair for Applied Stochastics and Risk Management, Helmut Schmidt University, Hamburg, Germany)

  • Schmid Friedrich

    (University of Cologne, Germany)

Abstract

Despite of its many shortcomings, Pearson’s rho is often used as an association measure for stock returns. A conditional version of Spearman’s rho is suggested as an alternative measure of association. This approach is purely nonparametric and avoids any kind of model misspecification. We derive hypothesis tests for the conditional rank-correlation coefficients particularly arising in bull and bear markets and study their finite-sample performance by Monte Carlo simulation. Further, the daily returns on stocks contained in the German stock index DAX 30 are analyzed. The empirical study reveals significant differences in the dependence of stock returns in bull and bear markets.

Suggested Citation

  • Dobric Jadran & Frahm Gabriel & Schmid Friedrich, 2013. "Dependence of Stock Returns in Bull and Bear Markets," Dependence Modeling, De Gruyter, vol. 1(2013), pages 94-110, December.
  • Handle: RePEc:vrs:demode:v:1:y:2013:i::p:94-110:n:5
    DOI: 10.2478/demo-2013-0005
    as

    Download full text from publisher

    File URL: https://doi.org/10.2478/demo-2013-0005
    Download Restriction: no

    File URL: https://libkey.io/10.2478/demo-2013-0005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. P. Silvapulle & C. W. J. Granger, 2001. "Large returns, conditional correlation and portfolio diversification: a value-at-risk approach," Quantitative Finance, Taylor & Francis Journals, vol. 1(5), pages 542-551.
    2. Andrew J. Patton, 2004. "On the Out-of-Sample Importance of Skewness and Asymmetric Dependence for Asset Allocation," Journal of Financial Econometrics, Oxford University Press, vol. 2(1), pages 130-168.
    3. Ang, Andrew & Chen, Joseph, 2002. "Asymmetric correlations of equity portfolios," Journal of Financial Economics, Elsevier, vol. 63(3), pages 443-494, March.
    4. Paul Doukhan & Jean-David Fermanian & Gabriel Lang, 2009. "An empirical central limit theorem with applications to copulas under weak dependence," Statistical Inference for Stochastic Processes, Springer, vol. 12(1), pages 65-87, February.
    5. Ines Fortin & Christoph Kuzmics, 2002. "Tail‐dependence in stock‐return pairs," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 11(2), pages 89-107, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fabrizio Durante & Enrico Foscolo & Alex Weissensteiner, 2017. "Dependence between Stock Returns of Italian Banks and the Sovereign Risk," Econometrics, MDPI, vol. 5(2), pages 1-14, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sleire, Anders D. & Støve, Bård & Otneim, Håkon & Berentsen, Geir Drage & Tjøstheim, Dag & Haugen, Sverre Hauso, 2022. "Portfolio allocation under asymmetric dependence in asset returns using local Gaussian correlations," Finance Research Letters, Elsevier, vol. 46(PB).
    2. Dobrić, Jadran & Frahm, Gabriel & Schmid, Friedrich, 2007. "Dependence of stock returns in bull and bear markets," Discussion Papers in Econometrics and Statistics 9/07, University of Cologne, Institute of Econometrics and Statistics.
    3. Rand Kwong Yew Low, 2018. "Vine copulas: modelling systemic risk and enhancing higher‐moment portfolio optimisation," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 58(S1), pages 423-463, November.
    4. Małgorzata Doman & Ryszard Doman, 2013. "Dynamic linkages between stock markets: the effects of crises and globalization," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 12(2), pages 87-112, August.
    5. Sancetta, A., 2005. "Copula Based Monte Carlo Integration in Financial Problems," Cambridge Working Papers in Economics 0506, Faculty of Economics, University of Cambridge.
    6. David E. Allen & Abhay K. Singh & Robert J. Powell & Michael McAleer & James Taylor & Lyn Thomas, 2013. "Return-Volatility Relationship: Insights from Linear and Non-Linear Quantile Regression," Tinbergen Institute Discussion Papers 13-020/III, Tinbergen Institute.
    7. Agbeyegbe, Terence D., 2015. "An inverted U-shaped crude oil price return-implied volatility relationship," Review of Financial Economics, Elsevier, vol. 27(C), pages 28-45.
    8. Mittnik, Stefan, 2014. "VaR-implied tail-correlation matrices," Economics Letters, Elsevier, vol. 122(1), pages 69-73.
    9. Dimic, Nebojsa & Piljak, Vanja & Swinkels, Laurens & Vulanovic, Milos, 2021. "The structure and degree of dependence in government bond markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 74(C).
    10. Lu, Meng-Jou & Chen, Cathy Yi-Hsuan & Härdle, Wolfgang Karl, 2015. "Copula-based factor model for credit risk analysis," SFB 649 Discussion Papers 2015-042, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    11. Xun Lu & Kin Lai & Liang Liang, 2014. "Portfolio value-at-risk estimation in energy futures markets with time-varying copula-GARCH model," Annals of Operations Research, Springer, vol. 219(1), pages 333-357, August.
    12. Lei Jiang & Esfandiar Maasoumi & Jiening Pan & Ke Wu, 2018. "A test of general asymmetric dependence," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(7), pages 1026-1043, November.
    13. Haas, Markus & Mittnik, Stefan & Paolella, Marc S., 2009. "Asymmetric multivariate normal mixture GARCH," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2129-2154, April.
    14. Lorán Chollete & Andréas Heinen & Alfonso Valdesogo, 2009. "Modeling International Financial Returns with a Multivariate Regime-switching Copula," Journal of Financial Econometrics, Oxford University Press, vol. 7(4), pages 437-480, Fall.
    15. Campbell, Rachel A.J. & Forbes, Catherine S. & Koedijk, Kees G. & Kofman, Paul, 2008. "Increasing correlations or just fat tails?," Journal of Empirical Finance, Elsevier, vol. 15(2), pages 287-309, March.
    16. Aslanidis, Nektarios & Dungey, Mardi & Savva, Christos S., 2008. "Progress Towards to Equity Market Integration in Eastern Europe," Working Papers 2072/13265, Universitat Rovira i Virgili, Department of Economics.
    17. Chollete, Lorán & Heinen, Andreas, 2006. "Frequent Turbulence? A Dynamic Copula Approach," Discussion Papers 2006/10, Norwegian School of Economics, Department of Business and Management Science.
    18. Cerrato, Mario & Crosby, John & Kim, Minjoo & Zhao, Yang, 2015. "US Monetary and Fiscal Policies - Conflict or Cooperation?," SIRE Discussion Papers 2015-78, Scottish Institute for Research in Economics (SIRE).
    19. Koliai, Lyes, 2016. "Extreme risk modeling: An EVT–pair-copulas approach for financial stress tests," Journal of Banking & Finance, Elsevier, vol. 70(C), pages 1-22.
    20. Long Kang, 2011. "Asset allocation in a Bayesian copula-GARCH framework: An application to the ‘passive funds versus active funds’ problem," Journal of Asset Management, Palgrave Macmillan, vol. 12(1), pages 45-66, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vrs:demode:v:1:y:2013:i::p:94-110:n:5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.