IDEAS home Printed from https://ideas.repec.org/p/zbw/ucdpse/507.html
   My bibliography  Save this paper

Asymptotic distributions of robust shape matrices and scales

Author

Listed:
  • Frahm, Gabriel

Abstract

It has been frequently observed in the literature that many multivariate statistical methods require the covariance or dispersion matrix ∑ of an elliptical distribution only up to some scaling constant. If the topic of interest is not the scale but only the shape of the elliptical distribution, it is not meaningful to focus on the asymptotic distribution of an estimator for ∑ or another matrix Γ ∝ ∑. In the present work, robust estimators for the shape matrix and the associated scale are investigated. Explicit expressions for their joint asymptotic distributions are derived. It turns out that if the joint asymptotic distribution is normal, the presented estimators are asymptotically independent for one and only one specific choice of the scale function. If it is non-normal (this holds for example if the estimators for the shape matrix and scale are based on the minimum volume ellipsoid estimator) only the presented scale function leads to asymptotically uncorrelated estimators. This is a generalization of a result obtained by Paindaveine (2008) in the context of local asymptotic normality theory.

Suggested Citation

  • Frahm, Gabriel, 2008. "Asymptotic distributions of robust shape matrices and scales," Discussion Papers in Econometrics and Statistics 5/07, University of Cologne, Institute of Econometrics and Statistics.
  • Handle: RePEc:zbw:ucdpse:507
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/44943/1/608699551.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Salibian-Barrera, Matias & Van Aelst, Stefan & Willems, Gert, 2006. "Principal Components Analysis Based on Multivariate MM Estimators With Fast and Robust Bootstrap," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1198-1211, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. La Vecchia, Davide & Moor, Alban & Scaillet, Olivier, 2023. "A higher-order correct fast moving-average bootstrap for dependent data," Journal of Econometrics, Elsevier, vol. 235(1), pages 65-81.
    2. M. Hubert & P. Rousseeuw & K. Vakili, 2014. "Shape bias of robust covariance estimators: an empirical study," Statistical Papers, Springer, vol. 55(1), pages 15-28, February.
    3. Roelant, E. & Van Aelst, S. & Croux, C., 2009. "Multivariate generalized S-estimators," Journal of Multivariate Analysis, Elsevier, vol. 100(5), pages 876-887, May.
    4. Luca Greco & Giovanni Saraceno & Claudio Agostinelli, 2021. "Robust Fitting of a Wrapped Normal Model to Multivariate Circular Data and Outlier Detection," Stats, MDPI, vol. 4(2), pages 1-18, June.
    5. Marco Riani & Andrea Cerioli & Francesca Torti, 2014. "On consistency factors and efficiency of robust S-estimators," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 356-387, June.
    6. Lorenzo Camponovo & O. Scaillet & Fabio Trojani, 2013. "Predictability Hidden by Anomalous Observations," Swiss Finance Institute Research Paper Series 13-05, Swiss Finance Institute.
    7. Salibian-Barrera, Matias & Van Aelst, Stefan & Yohai, Víctor J., 2016. "Robust tests for linear regression models based on τ-estimates," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 436-455.
    8. Ella Roelant & Stefan Aelst & Gert Willems, 2009. "The minimum weighted covariance determinant estimator," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 70(2), pages 177-204, September.
    9. Luca Greco & Alessio Farcomeni, 2016. "A plug-in approach to sparse and robust principal component analysis," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(3), pages 449-481, September.
    10. Ronchetti, Elvezio, 2020. "Accurate and robust inference," Econometrics and Statistics, Elsevier, vol. 14(C), pages 74-88.
    11. Camponovo, Lorenzo & Scaillet, Olivier & Trojani, Fabio, 2012. "Robust subsampling," Journal of Econometrics, Elsevier, vol. 167(1), pages 197-210.
    12. Chattopadhyay, Asis Kumar & Mondal, Saptarshi & Chattopadhyay, Tanuka, 2013. "Independent Component Analysis for the objective classification of globular clusters of the galaxy NGC 5128," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 17-32.
    13. Salibian-Barrera, Matias & Van Aelst, Stefan, 2008. "Robust model selection using fast and robust bootstrap," Computational Statistics & Data Analysis, Elsevier, vol. 52(12), pages 5121-5135, August.
    14. Aerts, S. & Haesbroeck, G. & Ruwet, C., 2015. "Multivariate coefficients of variation: Comparison and influence functions," Journal of Multivariate Analysis, Elsevier, vol. 142(C), pages 183-198.
    15. Matías Salibián-Barrera & Stefan Aelst & Gert Willems, 2008. "Fast and robust bootstrap," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 17(1), pages 41-71, February.
    16. Marc Hallin & Davy Paindaveine & Thomas Verdebout, 2009. "Optimal rank-based testing for principal component," Working Papers ECARES 2009_013, ULB -- Universite Libre de Bruxelles.
    17. Bernard, Gaspard & Verdebout, Thomas, 2024. "On testing the equality of latent roots of scatter matrices under ellipticity," Journal of Multivariate Analysis, Elsevier, vol. 199(C).
    18. Aaron Fisher & Brian Caffo & Brian Schwartz & Vadim Zipunnikov, 2016. "Fast, Exact Bootstrap Principal Component Analysis for > 1 Million," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 846-860, April.
    19. Khan, Jafar A. & Van Aelst, Stefan & Zamar, Ruben H., 2010. "Fast robust estimation of prediction error based on resampling," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3121-3130, December.
    20. Hallin Marc & Paindaveine Davy, 2006. "Parametric and semiparametric inference for shape: the role of the scale functional," Statistics & Risk Modeling, De Gruyter, vol. 24(3), pages 327-350, December.

    More about this item

    Keywords

    local asymptotic normality; M-estimator; R-estimator; robust covariance matrix estimator; scale-invariant function; S-estimator; shape matrix; Tyler's M-estimator;
    All these keywords.

    JEL classification:

    • H20 - Public Economics - - Taxation, Subsidies, and Revenue - - - General
    • E20 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - General (includes Measurement and Data)

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:ucdpse:507. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/sxkoede.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.