IDEAS home Printed from https://ideas.repec.org/p/zbw/tuddps/0199.html
   My bibliography  Save this paper

Wahlprognosen: Politische Wahlbörsen versus traditionelle Meinungsforschung

Author

Listed:
  • Berlemann, Michael

Abstract

Traditionell werden Prognosen über den Ausgang von politischen Wahlen aus Befragungsdaten gewonnen. Seit etwas mehr als einem Jahrzehnt beschäftigen sich auch Ökonomen vermehrt mit der Frage, wie eine gute Wahlprognose gewonnen werden kann. Als Instrument hierzu wurde die politische Wahlbörse entdeckt, an der Aktien für politische Parteien gehandelt werden. Im Rahmen der vorliegenden Arbeit werden beide Verfahren der Wahlprognose kurz vorgestellt und sowohl theoretisch als auch empirisch miteinander verglichen. Es zeigt sich, daß die Ergebnisse der bisher veranstalteten Wahlbörsen recht vielversprechend sind, jedoch durchaus noch Raum für Verbesserungen besteht.

Suggested Citation

  • Berlemann, Michael, 1999. "Wahlprognosen: Politische Wahlbörsen versus traditionelle Meinungsforschung," Dresden Discussion Paper Series in Economics 01/99, Technische Universität Dresden, Faculty of Business and Economics, Department of Economics.
  • Handle: RePEc:zbw:tuddps:0199
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/48128/1/30312119X.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Klaus Beckmann & Martin Werding, 1996. "'Passauer Wahlbörse': Information Processing in a Political Market Experiment," Kyklos, Wiley Blackwell, vol. 49(2), pages 171-204, May.
    2. Friedman, Daniel & Harrison, Glenn W & Salmon, Jon W, 1984. "The Informational Efficiency of Experimental Asset Markets," Journal of Political Economy, University of Chicago Press, vol. 92(3), pages 349-408, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Noussair, C.N. & Tucker, S. & Xu, Yilong, 2014. "A Future Market Reduces Bubbles but Allows Greater Profit for More Sophisticated Traders," Other publications TiSEM 43ded173-9eee-48a4-8a15-6, Tilburg University, School of Economics and Management.
    2. Corgnet, Brice & DeSantis, Mark & Porter, David, 2020. "The distribution of information and the price efficiency of markets," Journal of Economic Dynamics and Control, Elsevier, vol. 110(C).
    3. Mikuláš Gangur & Miroslav Plevný, 2014. "Tools for Consumer Rights Protection in the Prediction of Electronic Virtual Market and Technological Changes," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 16(36), pages 578-578, May.
    4. Palan, Stefan, 2010. "Digital options and efficiency in experimental asset markets," Journal of Economic Behavior & Organization, Elsevier, vol. 75(3), pages 506-522, September.
    5. Cason, Timothy N. & Gangadharan, Lata & Duke, Charlotte, 2003. "Market power in tradable emission markets: a laboratory testbed for emission trading in Port Phillip Bay, Victoria," Ecological Economics, Elsevier, vol. 46(3), pages 469-491, October.
    6. Mark Marner-Hausen, 2022. "Developing a Framework for Real-Time Trading in a Laboratory Financial Market," ECONtribute Discussion Papers Series 172, University of Bonn and University of Cologne, Germany.
    7. John Duffy & Jean Paul Rabanal & Olga A. Rud, 2022. "Market experiments with multiple assets: A survey," Chapters, in: Sascha Füllbrunn & Ernan Haruvy (ed.), Handbook of Experimental Finance, chapter 18, pages 213-224, Edward Elgar Publishing.
    8. Jerome L. Stein, 1992. "Price Discovery Processes," The Economic Record, The Economic Society of Australia, vol. 68(S1), pages 34-45, December.
    9. Michael Berlemann, 2004. "Experimentelle Aktienmärkte als Instrumente der Konjunkturprognose," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 57(16), pages 21-29, August.
    10. Merl, Robert & Stöckl, Thomas & Palan, Stefan, 2023. "Insider trading regulation and shorting constraints. Evaluating the joint effects of two market interventions," Journal of Banking & Finance, Elsevier, vol. 154(C).
    11. Edward Halim & Yohanes E. Riyanto & Nilanjan Roy, 2019. "Costly Information Acquisition, Social Networks, and Asset Prices: Experimental Evidence," Journal of Finance, American Finance Association, vol. 74(4), pages 1975-2010, August.
    12. Martin Barner & Francesco Feri & Charles R. Plott, 2005. "On the microstructure of price determination and information aggregation with sequential and asymmetric information arrival in an experimental asset market," Annals of Finance, Springer, vol. 1(1), pages 73-107, January.
    13. Noussair, Charles N. & Tucker, Steven & Xu, Yilong, 2016. "Futures markets, cognitive ability, and mispricing in experimental asset markets," Journal of Economic Behavior & Organization, Elsevier, vol. 130(C), pages 166-179.
    14. Koedijk, Kees & de Jong, Cyriel & Schnitzlein, Charles, 2002. "Stock Market Quality in the Prescence of a Traded Option," CEPR Discussion Papers 3173, C.E.P.R. Discussion Papers.
    15. Eric M. Aldrich & Kristian López Vargas, 2020. "Experiments in high-frequency trading: comparing two market institutions," Experimental Economics, Springer;Economic Science Association, vol. 23(2), pages 322-352, June.
    16. G. Caginalp & D. Balenovich, 1994. "Market oscillations induced by the competition between value-based and trend-based investment strategies," Applied Mathematical Finance, Taylor & Francis Journals, vol. 1(2), pages 129-164.
    17. Merl, Robert, 2022. "Literature review of experimental asset markets with insiders," Journal of Behavioral and Experimental Finance, Elsevier, vol. 33(C).
    18. Albert Ballinger & Gerald P. Dwyer & Ann B. Gillette, 2004. "Trading institutions and price discovery: the cash and futures markets for crude oil," FRB Atlanta Working Paper 2004-28, Federal Reserve Bank of Atlanta.
    19. Harrison, Glenn W., 2008. "Neuroeconomics: A Critical Reconsideration," Economics and Philosophy, Cambridge University Press, vol. 24(3), pages 303-344, November.
    20. Jan Hanousek & Evžen Kočenda, 2011. "Learning by investing," The Economics of Transition, The European Bank for Reconstruction and Development, vol. 19(1), pages 125-149, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:tuddps:0199. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/pltudde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.