IDEAS home Printed from https://ideas.repec.org/p/zbw/sfb649/sfb649dp2016-018.html
   My bibliography  Save this paper

Factorisable sparse tail event curves with expectiles

Author

Listed:
  • Härdle, Wolfgang Karl
  • Huang, Chen
  • Chao, Shih-Kang

Abstract

No abstract is available for this item.

Suggested Citation

  • Härdle, Wolfgang Karl & Huang, Chen & Chao, Shih-Kang, 2016. "Factorisable sparse tail event curves with expectiles," SFB 649 Discussion Papers 2016-018, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
  • Handle: RePEc:zbw:sfb649:sfb649dp2016-018
    Note: Oberwolfach Report: New Developments in Functional and Highly Multivariate Statistical Methodology
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/146187/1/857201255.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ming Yuan & Ali Ekici & Zhaosong Lu & Renato Monteiro, 2007. "Dimension reduction and coefficient estimation in multivariate linear regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(3), pages 329-346, June.
    2. Chao, Shih-Kang & Härdle, Wolfgang Karl & Yuan, Ming, 2015. "Factorisable sparse tail event curves," SFB 649 Discussion Papers 2015-034, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:hum:wpaper:sfb649dp2016-018 is not listed on IDEAS
    2. repec:hum:wpaper:sfb649dp2016-058 is not listed on IDEAS
    3. Chao, Shih-Kang & Härdle, Wolfgang Karl & Huang, Chen, 2016. "Multivariate factorisable sparse asymmetric least squares regression," SFB 649 Discussion Papers 2016-058, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    4. Hu, Junjie & López Cabrera, Brenda & Melzer, Awdesch, 2021. "Advanced statistical learning on short term load process forecasting," IRTG 1792 Discussion Papers 2021-020, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    5. Chen, Canyi & Xu, Wangli & Zhu, Liping, 2022. "Distributed estimation in heterogeneous reduced rank regression: With application to order determination in sufficient dimension reduction," Journal of Multivariate Analysis, Elsevier, vol. 190(C).
    6. Luo, Chongliang & Liang, Jian & Li, Gen & Wang, Fei & Zhang, Changshui & Dey, Dipak K. & Chen, Kun, 2018. "Leveraging mixed and incomplete outcomes via reduced-rank modeling," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 378-394.
    7. Fujikoshi, Yasunori & Sakurai, Tetsuro, 2016. "High-dimensional consistency of rank estimation criteria in multivariate linear model," Journal of Multivariate Analysis, Elsevier, vol. 149(C), pages 199-212.
    8. Chao, Shih-Kang & Härdle, Wolfgang K. & Yuan, Ming, 2021. "Factorisable Multitask Quantile Regression," Econometric Theory, Cambridge University Press, vol. 37(4), pages 794-816, August.
    9. Mishra, Aditya & Dey, Dipak K. & Chen, Yong & Chen, Kun, 2021. "Generalized co-sparse factor regression," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    10. Pan Shang & Lingchen Kong, 2021. "Regularization Parameter Selection for the Low Rank Matrix Recovery," Journal of Optimization Theory and Applications, Springer, vol. 189(3), pages 772-792, June.
    11. Qiu, Yue & Zheng, Yuchen, 2023. "Improving box office projections through sentiment analysis: Insights from regularization-based forecast combinations," Economic Modelling, Elsevier, vol. 125(C).
    12. Jin Liu & Jian Huang & Shuangge Ma, 2012. "Analysis of Genome-Wide Association Studies with Multiple Outcomes Using Penalization," PLOS ONE, Public Library of Science, vol. 7(12), pages 1-12, December.
    13. Arash Karimzadeh & Omidreza Shoghli & Sepehr Sabeti & Hamed Tabkhi, 2022. "Multi-Asset Defect Hotspot Prediction for Highway Maintenance Management: A Risk-Based Machine Learning Approach," Sustainability, MDPI, vol. 14(9), pages 1-27, April.
    14. Wang, Weining & Yu, Lining & Wang, Bingling, 2020. "Tail Event Driven Factor Augmented Dynamic Model," IRTG 1792 Discussion Papers 2020-022, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    15. Fanhua Shang & Yuanyuan Liu & Fanjie Shang & Hongying Liu & Lin Kong & Licheng Jiao, 2020. "A Unified Scalable Equivalent Formulation for Schatten Quasi-Norms," Mathematics, MDPI, vol. 8(8), pages 1-19, August.
    16. Kharratzadeh, Milad & Coates, Mark, 2017. "Semi-parametric order-based generalized multivariate regression," Journal of Multivariate Analysis, Elsevier, vol. 156(C), pages 89-102.
    17. Luwan Zhang & Grace Wahba & Ming Yuan, 2016. "Distance shrinkage and Euclidean embedding via regularized kernel estimation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(4), pages 849-867, September.
    18. Lee, Wonyul & Liu, Yufeng, 2012. "Simultaneous multiple response regression and inverse covariance matrix estimation via penalized Gaussian maximum likelihood," Journal of Multivariate Analysis, Elsevier, vol. 111(C), pages 241-255.
    19. Matsui, Hidetoshi, 2014. "Variable and boundary selection for functional data via multiclass logistic regression modeling," Computational Statistics & Data Analysis, Elsevier, vol. 78(C), pages 176-185.
    20. Zehua Chen & Yiwei Jiang, 2020. "A two-stage sequential conditional selection approach to sparse high-dimensional multivariate regression models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(1), pages 65-90, February.
    21. An, Baiguo & Zhang, Beibei, 2017. "Simultaneous selection of predictors and responses for high dimensional multivariate linear regression," Statistics & Probability Letters, Elsevier, vol. 127(C), pages 173-177.
    22. Miyashiro, Ryuhei & Takano, Yuichi, 2015. "Mixed integer second-order cone programming formulations for variable selection in linear regression," European Journal of Operational Research, Elsevier, vol. 247(3), pages 721-731.

    More about this item

    Keywords

    multivariate functional data; high-dimensional M-estimators; nuclear norm regularizer; factor analysis; expectile regression; fMRI; risk perception;
    All these keywords.

    JEL classification:

    • C38 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Classification Methdos; Cluster Analysis; Principal Components; Factor Analysis
    • C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • C91 - Mathematical and Quantitative Methods - - Design of Experiments - - - Laboratory, Individual Behavior
    • D87 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Neuroeconomics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:sfb649:sfb649dp2016-018. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/sohubde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.