IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i9p4979-d798697.html
   My bibliography  Save this article

Multi-Asset Defect Hotspot Prediction for Highway Maintenance Management: A Risk-Based Machine Learning Approach

Author

Listed:
  • Arash Karimzadeh

    (William State Lee College of Engineering, University of North Carolina at Charlotte, Charlotte, NC 28223, USA)

  • Omidreza Shoghli

    (William State Lee College of Engineering, University of North Carolina at Charlotte, Charlotte, NC 28223, USA)

  • Sepehr Sabeti

    (William State Lee College of Engineering, University of North Carolina at Charlotte, Charlotte, NC 28223, USA)

  • Hamed Tabkhi

    (William State Lee College of Engineering, University of North Carolina at Charlotte, Charlotte, NC 28223, USA)

Abstract

Transportation agencies constantly strive to tackle the challenge of limited budgets and continuously deteriorating highway infrastructure. They look for optimal solutions to make intelligent maintenance and repair investments. Condition prediction of highway assets and, in turn, prediction of their maintenance needs are key elements of effective maintenance optimization and prioritization. This paper proposes a novel risk-based framework that expands the potential of available data by considering the probabilistic susceptibility of assets in the prediction process. It combines a risk score generator with machine learning to forecast the hotspots of multiple defects while considering the interrelations between defects. With this, we developed a scalable algorithm, Multi-asset Defect Hotspot Predictor (MDHP), and then demonstrated its performance in a real-world case. In the case study, MDHP predicted the hotspots of three defects on paved ditches, considering the interrelation between paved ditches and five nearby assets. The results demonstrate an acceptable accuracy in predicting hotspots while highlighting the interrelation between adjacent assets and their contribution to future defects. Overall, this study offers a scalable approach with contribution in data-driven multi-asset maintenance planning with potential benefits to a broader range of linear infrastructures such as sewers, water networks, and railroads.

Suggested Citation

  • Arash Karimzadeh & Omidreza Shoghli & Sepehr Sabeti & Hamed Tabkhi, 2022. "Multi-Asset Defect Hotspot Prediction for Highway Maintenance Management: A Risk-Based Machine Learning Approach," Sustainability, MDPI, vol. 14(9), pages 1-27, April.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:9:p:4979-:d:798697
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/9/4979/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/9/4979/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tso, Geoffrey K.F. & Yau, Kelvin K.W., 2007. "Predicting electricity energy consumption: A comparison of regression analysis, decision tree and neural networks," Energy, Elsevier, vol. 32(9), pages 1761-1768.
    2. Wen-chuan Wang & Kwok-wing Chau & Dong-mei Xu & Xiao-Yun Chen, 2015. "Improving Forecasting Accuracy of Annual Runoff Time Series Using ARIMA Based on EEMD Decomposition," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2655-2675, June.
    3. Len Wright & Paul Chinowsky & Kenneth Strzepek & Russell Jones & Richard Streeter & Joel Smith & Jean-Marc Mayotte & Anthony Powell & Lesley Jantarasami & William Perkins, 2012. "Estimated effects of climate change on flood vulnerability of U.S. bridges," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 17(8), pages 939-955, December.
    4. Ming Yuan & Ali Ekici & Zhaosong Lu & Renato Monteiro, 2007. "Dimension reduction and coefficient estimation in multivariate linear regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(3), pages 329-346, June.
    5. James Millington & Raúl Romero-Calcerrada & John Wainwright & George Perry, 2008. "An Agent-Based Model of Mediterranean Agricultural Land-Use/Cover Change for Examining Wildfire Risk," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 11(4), pages 1-4.
    6. Sohn, Jungyul, 2006. "Evaluating the significance of highway network links under the flood damage: An accessibility approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(6), pages 491-506, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei, Sen & Li, Yanping & Yang, Hanqing & Xie, Minghui & Wang, Yuanqing, 2023. "A comprehensive operation and maintenance assessment for intelligent highways: A case study in Hong Kong-Zhuhai-Macao bridge," Transport Policy, Elsevier, vol. 142(C), pages 84-98.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amin, Shohel & Tamima, Umma & Amador-Jiménez, Luis E., 2019. "Optimal pavement management: Resilient roads in support of emergency response of cyclone affected coastal areas," Transportation Research Part A: Policy and Practice, Elsevier, vol. 119(C), pages 45-61.
    2. Voyant, Cyril & Motte, Fabrice & Notton, Gilles & Fouilloy, Alexis & Nivet, Marie-Laure & Duchaud, Jean-Laurent, 2018. "Prediction intervals for global solar irradiation forecasting using regression trees methods," Renewable Energy, Elsevier, vol. 126(C), pages 332-340.
    3. Chen, Shaopei & Claramunt, Christophe & Ray, Cyril, 2014. "A spatio-temporal modelling approach for the study of the connectivity and accessibility of the Guangzhou metropolitan network," Journal of Transport Geography, Elsevier, vol. 36(C), pages 12-23.
    4. Ankit Kumar Srivastava & Ajay Shekhar Pandey & Rajvikram Madurai Elavarasan & Umashankar Subramaniam & Saad Mekhilef & Lucian Mihet-Popa, 2021. "A Novel Hybrid Feature Selection Method for Day-Ahead Electricity Price Forecasting," Energies, MDPI, vol. 14(24), pages 1-16, December.
    5. Rahimi-Golkhandan, Armin & Garvin, Michael J. & Brown, Bryan L., 2019. "Characterizing and measuring transportation infrastructure diversity through linkages with ecological stability theory," Transportation Research Part A: Policy and Practice, Elsevier, vol. 128(C), pages 114-130.
    6. Jihoon Moon & Junhong Kim & Pilsung Kang & Eenjun Hwang, 2020. "Solving the Cold-Start Problem in Short-Term Load Forecasting Using Tree-Based Methods," Energies, MDPI, vol. 13(4), pages 1-37, February.
    7. Chen, Canyi & Xu, Wangli & Zhu, Liping, 2022. "Distributed estimation in heterogeneous reduced rank regression: With application to order determination in sufficient dimension reduction," Journal of Multivariate Analysis, Elsevier, vol. 190(C).
    8. Yildiz, B. & Bilbao, J.I. & Sproul, A.B., 2017. "A review and analysis of regression and machine learning models on commercial building electricity load forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1104-1122.
    9. Liang Jia & Saini Yang & Weiping Wang & Xinlong Zhang, 2022. "Impact analysis of highways in China under future extreme precipitation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(2), pages 1097-1113, January.
    10. Jesus Gonzalez-Feliu & Aurélie Mercier, 2013. "A combined people-freight accessibility approach for urban retailing and leisure planning at strategic level," Post-Print halshs-00919537, HAL.
    11. Salman Sharifazari & Shahab Araghinejad, 2015. "Development of a Nonparametric Model for Multivariate Hydrological Monthly Series Simulation Considering Climate Change Impacts," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(14), pages 5309-5322, November.
    12. James D. A. Millington & Hang Xiong & Steve Peterson & Jeremy Woods, 2017. "Integrating Modelling Approaches for Understanding Telecoupling: Global Food Trade and Local Land Use," Land, MDPI, vol. 6(3), pages 1-18, August.
    13. Nutkiewicz, Alex & Yang, Zheng & Jain, Rishee K., 2018. "Data-driven Urban Energy Simulation (DUE-S): A framework for integrating engineering simulation and machine learning methods in a multi-scale urban energy modeling workflow," Applied Energy, Elsevier, vol. 225(C), pages 1176-1189.
    14. Jenelius, Erik, 2010. "User inequity implications of road network vulnerability," The Journal of Transport and Land Use, Center for Transportation Studies, University of Minnesota, vol. 2(3), pages 57-73.
    15. Mohammad Zounemat-Kermani, 2016. "Investigating Chaos and Nonlinear Forecasting in Short Term and Mid-term River Discharge," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(5), pages 1851-1865, March.
    16. Jenelius, Erik & Mattsson, Lars-Göran, 2012. "Road network vulnerability analysis of area-covering disruptions: A grid-based approach with case study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(5), pages 746-760.
    17. Almoghathawi, Yasser & Barker, Kash & Rocco, Claudio M. & Nicholson, Charles D., 2017. "A multi-criteria decision analysis approach for importance identification and ranking of network components," Reliability Engineering and System Safety, Elsevier, vol. 158(C), pages 142-151.
    18. Liukkonen, M. & Heikkinen, M. & Hiltunen, T. & Hälikkä, E. & Kuivalainen, R. & Hiltunen, Y., 2011. "Artificial neural networks for analysis of process states in fluidized bed combustion," Energy, Elsevier, vol. 36(1), pages 339-347.
    19. Movagharnejad, Kamyar & Mehdizadeh, Bahman & Banihashemi, Morteza & Kordkheili, Masoud Sheikhi, 2011. "Forecasting the differences between various commercial oil prices in the Persian Gulf region by neural network," Energy, Elsevier, vol. 36(7), pages 3979-3984.
    20. Akbari, Vahid & Salman, F. Sibel, 2017. "Multi-vehicle synchronized arc routing problem to restore post-disaster network connectivity," European Journal of Operational Research, Elsevier, vol. 257(2), pages 625-640.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:9:p:4979-:d:798697. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.