IDEAS home Printed from https://ideas.repec.org/p/zbw/sfb649/sfb649dp2016-058.html
   My bibliography  Save this paper

Multivariate factorisable sparse asymmetric least squares regression

Author

Listed:
  • Chao, Shih-Kang
  • Härdle, Wolfgang Karl
  • Huang, Chen

Abstract

More and more data are observed in form of curves. Numerous applications in finance, neuroeconomics, demographics and also weather and climate analysis make it necessary to extract common patterns and prompt joint modelling of individual curve variation. Focus of such joint variation analysis has been on fluctuations around a mean curve, a statistical task that can be solved via functional PCA. In a variety of questions concerning the above applications one is more interested in the tail asking therefore for tail event curves (TEC) studies. With increasing dimension of curves and complexity of the covariates though one faces numerical problems and has to look into sparsity related issues. Here the idea of FActorisable Sparse Tail Event Curves (FASTEC) via multivariate asymmetric least squares regression (expectile regression) in a high-dimensional framework is proposed. Expectile regression captures the tail moments globally and the smooth loss function improves the convergence rate in the iterative estimation algorithm compared with quantile regression. The necessary penalization is done via the nuclear norm. Finite sample oracle properties of the estimator associated with asymmetric squared error loss and nuclear norm regularizer are studied formally in this paper. As an empirical illustration, the FASTEC technique is applied on fMRI data to see if individual's risk perception can be recovered by brain activities. Results show that factor loadings over different tail levels can be employed to predict individual's risk attitudes.

Suggested Citation

  • Chao, Shih-Kang & Härdle, Wolfgang Karl & Huang, Chen, 2016. "Multivariate factorisable sparse asymmetric least squares regression," SFB 649 Discussion Papers 2016-058, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
  • Handle: RePEc:zbw:sfb649:sfb649dp2016-058
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/162500/1/876293798.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kuan, Chung-Ming & Yeh, Jin-Huei & Hsu, Yu-Chin, 2009. "Assessing value at risk with CARE, the Conditional Autoregressive Expectile models," Journal of Econometrics, Elsevier, vol. 150(2), pages 261-270, June.
    2. Fang Yao & Hans-Georg Müller & Andrew J. Clifford & Steven R. Dueker & Jennifer Follett & Yumei Lin & Bruce A. Buchholz & John S. Vogel, 2003. "Shrinkage Estimation for Functional Principal Component Scores with Application to the Population Kinetics of Plasma Folate," Biometrics, The International Biometric Society, vol. 59(3), pages 676-685, September.
    3. Shih-Kang Chao & Katharina Proksch & Holger Dette & Wolfgang Karl Härdle, 2017. "Confidence Corridors for Multivariate Generalized Quantile Regression," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(1), pages 70-85, January.
    4. López Cabrera, Brenda & Schulz, Franziska, 2014. "Forecasting generalized quantiles of electricity demand: A functional data approach," SFB 649 Discussion Papers 2014-030, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    5. Brenda López Cabrera & Franziska Schulz, 2017. "Forecasting Generalized Quantiles of Electricity Demand: A Functional Data Approach," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(517), pages 127-136, January.
    6. Tran, Ngoc M. & Burdejová, Petra & Ospienko, Maria & Härdle, Wolfgang K., 2019. "Principal component analysis in an asymmetric norm," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 1-21.
    7. Ming Yuan & Ali Ekici & Zhaosong Lu & Renato Monteiro, 2007. "Dimension reduction and coefficient estimation in multivariate linear regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(3), pages 329-346, June.
    8. Tran, Ngoc Mai & Osipenko, Maria & Härdle, Wolfgang Karl, 2014. "Principal component analysis in an asymmetric norm," SFB 649 Discussion Papers 2014-001, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    9. Izenman, Alan Julian, 1975. "Reduced-rank regression for the multivariate linear model," Journal of Multivariate Analysis, Elsevier, vol. 5(2), pages 248-264, June.
    10. Chao, Shih-Kang & Härdle, Wolfgang Karl & Yuan, Ming, 2015. "Factorisable sparse tail event curves," SFB 649 Discussion Papers 2015-034, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    11. Robert Serfling, 2002. "Quantile functions for multivariate analysis: approaches and applications," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 56(2), pages 214-232, May.
    12. Johanna F. Ziegel, 2016. "Coherence And Elicitability," Mathematical Finance, Wiley Blackwell, vol. 26(4), pages 901-918, October.
    13. Xu, Xiu & Mihoci, Andrija & Härdle, Wolfgang Karl, 2018. "lCARE - localizing conditional autoregressive expectiles," Journal of Empirical Finance, Elsevier, vol. 48(C), pages 198-220.
    14. Majer, Piotr & Mohr, Peter N. C. & Heekeren, Hauke R. & Härdle, Wolfgang Karl, 2014. "Portfolio decisions and brain reactions via the CEAD method," SFB 649 Discussion Papers 2014-036, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    15. Colin F. Camerer, 2007. "Neuroeconomics: Using Neuroscience to Make Economic Predictions," Economic Journal, Royal Economic Society, vol. 117(519), pages 26-42, March.
    16. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    17. Antonio E. Bernardo & Olivier Ledoit, 2000. "Gain, Loss, and Asset Pricing," Journal of Political Economy, University of Chicago Press, vol. 108(1), pages 144-172, February.
    18. Newey, Whitney K & Powell, James L, 1987. "Asymmetric Least Squares Estimation and Testing," Econometrica, Econometric Society, vol. 55(4), pages 819-847, July.
    19. James W. Taylor, 2008. "Estimating Value at Risk and Expected Shortfall Using Expectiles," Journal of Financial Econometrics, Oxford University Press, vol. 6(2), pages 231-252, Spring.
    20. Alena Bömmel & Song Song & Piotr Majer & Peter Mohr & Hauke Heekeren & Wolfgang Härdle, 2014. "Risk Patterns and Correlated Brain Activities. Multidimensional Statistical Analysis of fMRI Data in Economic Decision Making Study," Psychometrika, Springer;The Psychometric Society, vol. 79(3), pages 489-514, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:hum:wpaper:sfb649dp2016-058 is not listed on IDEAS
    2. Chao, Shih-Kang & Härdle, Wolfgang K. & Huang, Chen, 2018. "Multivariate factorizable expectile regression with application to fMRI data," Computational Statistics & Data Analysis, Elsevier, vol. 121(C), pages 1-19.
    3. Tran, Ngoc Mai & Burdejová, Petra & Osipenko, Maria & Härdle, Wolfgang Karl, 2016. "Principal component analysis in an asymmetric norm," SFB 649 Discussion Papers 2016-040, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    4. Tran, Ngoc Mai & Osipenko, Maria & Härdle, Wolfgang Karl, 2014. "Principal component analysis in an asymmetric norm," SFB 649 Discussion Papers 2014-001, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    5. repec:hum:wpaper:sfb649dp2017-027 is not listed on IDEAS
    6. Zhang, Feipeng & Xu, Yixiong & Fan, Caiyun, 2023. "Nonparametric inference of expectile-based value-at-risk for financial time series with application to risk assessment," International Review of Financial Analysis, Elsevier, vol. 90(C).
    7. Wang, Bingling & Li, Yingxing & Härdle, Wolfgang Karl, 2022. "K-expectiles clustering," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    8. Daouia, Abdelaati & Padoan, Simone A. & Stupfler, Gilles, 2023. "Extreme expectile estimation for short-tailed data, with an application to market risk assessment," TSE Working Papers 23-1414, Toulouse School of Economics (TSE), revised May 2024.
    9. Daouia, Abdelaati & Girard, Stéphane & Stupfler, Gilles, 2021. "ExpectHill estimation, extreme risk and heavy tails," Journal of Econometrics, Elsevier, vol. 221(1), pages 97-117.
    10. Man, Rebeka & Tan, Kean Ming & Wang, Zian & Zhou, Wen-Xin, 2024. "Retire: Robust expectile regression in high dimensions," Journal of Econometrics, Elsevier, vol. 239(2).
    11. Petra Burdejová & Wolfgang K. Härdle, 2019. "Dynamic semi-parametric factor model for functional expectiles," Computational Statistics, Springer, vol. 34(2), pages 489-502, June.
    12. Girard, Stéphane & Stupfler, Gilles & Usseglio-Carleve, Antoine, 2022. "Functional estimation of extreme conditional expectiles," Econometrics and Statistics, Elsevier, vol. 21(C), pages 131-158.
    13. Tran, Ngoc M. & Burdejová, Petra & Ospienko, Maria & Härdle, Wolfgang K., 2019. "Principal component analysis in an asymmetric norm," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 1-21.
    14. Mohammedi, Mustapha & Bouzebda, Salim & Laksaci, Ali, 2021. "The consistency and asymptotic normality of the kernel type expectile regression estimator for functional data," Journal of Multivariate Analysis, Elsevier, vol. 181(C).
    15. Stéphane Girard & Gilles Stupfler & Antoine Usseglio‐Carleve, 2022. "Nonparametric extreme conditional expectile estimation," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(1), pages 78-115, March.
    16. Taoufik Bouezmarni & Mohamed Doukali & Abderrahim Taamouti, 2024. "Testing Granger non-causality in expectiles," Econometric Reviews, Taylor & Francis Journals, vol. 43(1), pages 30-51, January.
    17. repec:hum:wpaper:sfb649dp2014-030 is not listed on IDEAS
    18. Hamidi, Benjamin & Maillet, Bertrand & Prigent, Jean-Luc, 2014. "A dynamic autoregressive expectile for time-invariant portfolio protection strategies," Journal of Economic Dynamics and Control, Elsevier, vol. 46(C), pages 1-29.
    19. repec:hal:journl:hal-04672516 is not listed on IDEAS
    20. Daouia, Abdelaati & Girard, Stéphane & Stupfler, Gilles, 2018. "Tail expectile process and risk assessment," TSE Working Papers 18-944, Toulouse School of Economics (TSE).
    21. James Ming Chen, 2018. "On Exactitude in Financial Regulation: Value-at-Risk, Expected Shortfall, and Expectiles," Risks, MDPI, vol. 6(2), pages 1-28, June.
    22. Kneib, Thomas & Silbersdorff, Alexander & Säfken, Benjamin, 2023. "Rage Against the Mean – A Review of Distributional Regression Approaches," Econometrics and Statistics, Elsevier, vol. 26(C), pages 99-123.
    23. Tu, Yundong & Wang, Siwei, 2020. "Jackknife model averaging for expectile regressions in increasing dimension," Economics Letters, Elsevier, vol. 197(C).
    24. Yingying Jiang & Fuming Lin & Yong Zhou, 2021. "The kth power expectile regression," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(1), pages 83-113, February.

    More about this item

    Keywords

    high-dimensionalM-estimator; nuclear norm regularizer; factorization; expectile regression; fMRI; risk perception; multivariate functional data;
    All these keywords.

    JEL classification:

    • C38 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Classification Methdos; Cluster Analysis; Principal Components; Factor Analysis
    • C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • C91 - Mathematical and Quantitative Methods - - Design of Experiments - - - Laboratory, Individual Behavior
    • D87 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Neuroeconomics

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:sfb649:sfb649dp2016-058. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/sohubde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.