IDEAS home Printed from https://ideas.repec.org/p/zbw/sfb649/sfb649dp2010-018.html
   My bibliography  Save this paper

Time varying hierarchical archimedean copulae

Author

Listed:
  • Härdle, Wolfgang Karl
  • Okhrin, Ostap
  • Okhrin, Yarema

Abstract

There is increasing demand for models of time-varying and non-Gaussian dependencies for mul- tivariate time-series. Available models suffer from the curse of dimensionality or restrictive assumptions on the parameters and the distribution. A promising class of models are the hierarchical Archimedean copulae (HAC) that allow for non-exchangeable and non-Gaussian dependency structures with a small number of parameters. In this paper we develop a novel adaptive estimation technique of the parameters and of the structure of HAC for time-series. The approach relies on a local change point detection procedure and a locally constant HAC approximation. Typical applications are in the financial area but also recently in the spatial analysis of weather parameters. We analyse the time varying dependency structure of stock indices and exchange rates. We find that for stock indices the copula parameter changes dynam- ically but the hierarchical structure is constant over time. Interestingly in our exchange rate example both structure and parameters vary dynamically.

Suggested Citation

  • Härdle, Wolfgang Karl & Okhrin, Ostap & Okhrin, Yarema, 2010. "Time varying hierarchical archimedean copulae," SFB 649 Discussion Papers 2010-018, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
  • Handle: RePEc:zbw:sfb649:sfb649dp2010-018
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/39286/1/623857200.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen, Ying & Härdle, Wolfgang & Jeong, Seok-Oh, 2008. "Nonparametric Risk Management With Generalized Hyperbolic Distributions," Journal of the American Statistical Association, American Statistical Association, vol. 103(483), pages 910-923.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fengler, Matthias & Okhrin, Ostap, 2012. "Realized Copula," Economics Working Paper Series 1214, University of St. Gallen, School of Economics and Political Science.
    2. Diebold, Francis X. & Yılmaz, Kamil, 2014. "On the network topology of variance decompositions: Measuring the connectedness of financial firms," Journal of Econometrics, Elsevier, vol. 182(1), pages 119-134.
    3. Krzysztof Burnecki & Joanna Janczura & Rafal Weron, 2010. "Building Loss Models," HSC Research Reports HSC/10/03, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
    4. repec:hum:wpaper:sfb649dp2012-054 is not listed on IDEAS
    5. repec:hum:wpaper:sfb649dp2010-048 is not listed on IDEAS
    6. repec:hum:wpaper:sfb649dp2012-034 is not listed on IDEAS
    7. Hautsch, Nikolaus & Okhrin, Ostap & Ristig, Alexander, 2012. "Modeling time-varying dependencies between positive-valued high-frequency time series," SFB 649 Discussion Papers 2012-054, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    8. Okhrin, Ostap, 2010. "Fitting high-dimensional copulae to data," SFB 649 Discussion Papers 2010-022, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. J. Hambuckers & C. Heuchenne, 2017. "A robust statistical approach to select adequate error distributions for financial returns," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(1), pages 137-161, January.
    2. Mencía, Javier & Sentana, Enrique, 2009. "Multivariate location-scale mixtures of normals and mean-variance-skewness portfolio allocation," Journal of Econometrics, Elsevier, vol. 153(2), pages 105-121, December.
    3. Yuru Sun & Worapree Maneesoonthorn & Ruben Loaiza-Maya & Gael M. Martin, 2023. "Optimal probabilistic forecasts for risk management," Papers 2303.01651, arXiv.org.
    4. Willmot, Gordon E. & Woo, Jae-Kyung, 2022. "Remarks on a generalized inverse Gaussian type integral with applications," Applied Mathematics and Computation, Elsevier, vol. 430(C).
    5. Saralees Nadarajah & Bo Zhang & Stephen Chan, 2014. "Estimation methods for expected shortfall," Quantitative Finance, Taylor & Francis Journals, vol. 14(2), pages 271-291, February.
    6. Alexios Ghalanos & Eduardo Rossi & Giovanni Urga, 2015. "Independent Factor Autoregressive Conditional Density Model," Econometric Reviews, Taylor & Francis Journals, vol. 34(5), pages 594-616, May.
    7. Chen, Ying & Härdle, Wolfgang Karl & Spokoiny, Vladimir, 2006. "GHICA: Risk analysis with GH distributions and independent components," SFB 649 Discussion Papers 2006-078, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    8. Beatrice Foroni & Luca Merlo & Lea Petrella, 2024. "Hidden Markov graphical models with state-dependent generalized hyperbolic distributions," Papers 2412.03668, arXiv.org.
    9. Borak, Szymon & Misiorek, Adam & Weron, Rafał, 2010. "Models for heavy-tailed asset returns," SFB 649 Discussion Papers 2010-049, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    10. repec:hum:wpaper:sfb649dp2012-034 is not listed on IDEAS
    11. Čίžek, Pavel & Komorád, Karel, 2005. "Implied trinomial trees," SFB 649 Discussion Papers 2005-007, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    12. Fengler, Matthias R. & Okhrin, Ostap, 2016. "Managing risk with a realized copula parameter," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 131-152.
    13. d’Addona, Stefano & Khanom, Najrin, 2022. "Estimating tail-risk using semiparametric conditional variance with an application to meme stocks," International Review of Economics & Finance, Elsevier, vol. 82(C), pages 241-260.
    14. Seok-Oh Jeong & Kee-Hoon Kang, 2009. "Nonparametric estimation of value-at-risk," Journal of Applied Statistics, Taylor & Francis Journals, vol. 36(11), pages 1225-1238.
    15. Yu, Yaming, 2017. "On normal variance–mean mixtures," Statistics & Probability Letters, Elsevier, vol. 121(C), pages 45-50.
    16. repec:hum:wpaper:sfb649dp2006-078 is not listed on IDEAS
    17. Julien Chevallier & Stéphane Goutte, 2017. "Estimation of Lévy-driven Ornstein–Uhlenbeck processes: application to modeling of $$\hbox {CO}_2$$ CO 2 and fuel-switching," Annals of Operations Research, Springer, vol. 255(1), pages 169-197, August.
    18. Michal Skorepa, 2014. "Concurrent Capital Buffers in a Banking Group," Occasional Publications - Chapters in Edited Volumes, in: CNB Financial Stability Report 2013/2014, chapter 0, pages 128-136, Czech National Bank.
    19. Fengler, Matthias R. & Okhrin, Ostap, 2012. "Realized copula," SFB 649 Discussion Papers 2012-034, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    20. Härdle Wolfgang Karl & Okhrin Ostap & Okhrin Yarema, 2013. "Dynamic structured copula models," Statistics & Risk Modeling, De Gruyter, vol. 30(4), pages 361-388, December.
    21. Chen, Ying & Härdle, Wolfgang & Spokoiny, Vladimir, 2010. "GHICA -- Risk analysis with GH distributions and independent components," Journal of Empirical Finance, Elsevier, vol. 17(2), pages 255-269, March.
    22. Stefan Kassberger & Rüdiger Kiesel, 2006. "A fully parametric approach to return modelling and risk management of hedge funds," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 20(4), pages 472-491, December.

    More about this item

    Keywords

    copula; multivariate distribution; Archimedean copula; adaptive estimation;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C50 - Mathematical and Quantitative Methods - - Econometric Modeling - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:sfb649:sfb649dp2010-018. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/sohubde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.