IDEAS home Printed from https://ideas.repec.org/p/zbw/sfb475/200623.html
   My bibliography  Save this paper

Robust Filters for Intensive Care Monitoring: Beyond the Running Median

Author

Listed:
  • Schettlinger, Karen
  • Fried, Roland
  • Gather, Ursula

Abstract

Current alarm systems on intensive care units create a very high rate of false positive alarms because most of them simply compare the physiological measurements to fixed thresholds. An improvement can be expected when the actual measurements are replaced by smoothed estimates of the underlying signal. However, classical filtering procedures are not appropriate for signal extraction as standard assumptions, like stationarity, do no hold here: the measured time series often show long periods without change, but also upward or downward trends, sudden shifts and numerous large measurement artefacts. Alternative approaches are needed to extract the relevant information from the data, i.e. the underlying signal of the monitored variables and the relevant patterns of change, like abrupt shifts and trends. This article reviews recent research on filter based online signal extraction methods which are designed for application in intensive care.

Suggested Citation

  • Schettlinger, Karen & Fried, Roland & Gather, Ursula, 2006. "Robust Filters for Intensive Care Monitoring: Beyond the Running Median," Technical Reports 2006,23, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
  • Handle: RePEc:zbw:sfb475:200623
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/22666/1/tr23-06.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ursula Gather & Karen Schettlinger & Roland Fried, 2006. "Online signal extraction by robust linear regression," Computational Statistics, Springer, vol. 21(1), pages 33-51, March.
    2. P.J. Rousseeuw & A.M. Leroy, 1988. "A robust scale estimator based on the shortest half," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 42(2), pages 103-116, June.
    3. Fried, Roland & Bernholt, Thorsten & Gather, Ursula, 2006. "Repeated median and hybrid filters," Computational Statistics & Data Analysis, Elsevier, vol. 50(9), pages 2313-2338, May.
    4. Struyf, Anja J. & Rousseeuw, Peter J., 1999. "Halfspace Depth and Regression Depth Characterize the Empirical Distribution," Journal of Multivariate Analysis, Elsevier, vol. 69(1), pages 135-153, April.
    5. Gather, Ursula & Einbeck, Jochen & Fried, Roland, 2005. "Weighted Repeated Median Smoothing and Filtering," Technical Reports 2005,33, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    6. Fried, Roland & Gather, Ursula, 2004. "Methods and algorithms for robust filtering," Technical Reports 2004,44, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    7. Bernholt, Thorsten & Fried, Roland & Gather, Ursula & Wegner, Ingo, 2004. "Modified repeated median filters," Technical Reports 2004,46, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gather, Ursula & Fried, Roland & Lanius, Vivian, 2005. "Robust detail-preserving signal extraction," Technical Reports 2005,54, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    2. Lanius, Vivian & Gather, Ursula, 2007. "Robust online signal extraction from multivariate time series," Technical Reports 2007,38, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    3. Lanius, Vivian & Gather, Ursula, 2010. "Robust online signal extraction from multivariate time series," Computational Statistics & Data Analysis, Elsevier, vol. 54(4), pages 966-975, April.
    4. Oliver Morell & Dennis Otto & Roland Fried, 2013. "On robust cross-validation for nonparametric smoothing," Computational Statistics, Springer, vol. 28(4), pages 1617-1637, August.
    5. Gather, Ursula & Einbeck, Jochen & Fried, Roland, 2005. "Weighted Repeated Median Smoothing and Filtering," Technical Reports 2005,33, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    6. Gelper, Sarah & Schettlinger, Karen & Croux, Christophe & Gather, Ursula, 2007. "Robust online scale estimation in time series : regression-free approach," Technical Reports 2007,17, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    7. Fried, Roland, 2007. "On the robust detection of edges in time series filtering," Computational Statistics & Data Analysis, Elsevier, vol. 52(2), pages 1063-1074, October.
    8. Mia Hubert & Peter Rousseeuw & Pieter Segaert, 2015. "Multivariate functional outlier detection," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(2), pages 177-202, July.
    9. Stanislav Nagy, 2021. "Halfspace depth does not characterize probability distributions," Statistical Papers, Springer, vol. 62(3), pages 1135-1139, June.
    10. Jérôme Lahaye & Christopher Neely, 2020. "The Role of Jumps in Volatility Spillovers in Foreign Exchange Markets: Meteor Shower and Heat Waves Revisited," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(2), pages 410-427, April.
    11. Yi He & John H. J. Einmahl, 2017. "Estimation of extreme depth-based quantile regions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(2), pages 449-461, March.
    12. Deniz Erdemlioglu & Sébastien Laurent & Christopher J. Neely, 2013. "Econometric modeling of exchange rate volatility and jumps," Chapters, in: Adrian R. Bell & Chris Brooks & Marcel Prokopczuk (ed.), Handbook of Research Methods and Applications in Empirical Finance, chapter 16, pages 373-427, Edward Elgar Publishing.
    13. Jonas Baillien & Irène Gijbels & Anneleen Verhasselt, 2023. "Flexible asymmetric multivariate distributions based on two-piece univariate distributions," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(1), pages 159-200, February.
    14. Martina Čampulová, 2018. "Comparison of Methods for Smoothing Environmental Data with an Application to Particulate Matter PM10," Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, Mendel University Press, vol. 66(2), pages 453-463.
    15. Dewachter, Hans & Erdemlioglu, Deniz & Gnabo, Jean-Yves & Lecourt, Christelle, 2014. "The intra-day impact of communication on euro-dollar volatility and jumps," Journal of International Money and Finance, Elsevier, vol. 43(C), pages 131-154.
    16. Xiaohui Liu & Karl Mosler & Pavlo Mozharovskyi, 2017. "Fast computation of Tukey trimmed regions and median in dimension p > 2," Working Papers 2017-71, Center for Research in Economics and Statistics.
    17. YI, Chae-Deug, 2023. "Exchange rate volatility and intraday jump probability with periodicity filters using a local robust variance," Finance Research Letters, Elsevier, vol. 55(PA).
    18. Gather, Ursula & Schultze, Verena, 1997. "Robust extimation of scale of an exponential distribution," Technical Reports 1997,08, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    19. Erdemlioglu, Deniz & Laurent, Sébastien & Neely, Christopher J., 2015. "Which continuous-time model is most appropriate for exchange rates?," Journal of Banking & Finance, Elsevier, vol. 61(S2), pages 256-268.
    20. Hassairi, Abdelhamid & Regaieg, Ons, 2008. "On the Tukey depth of a continuous probability distribution," Statistics & Probability Letters, Elsevier, vol. 78(15), pages 2308-2313, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:sfb475:200623. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/isdorde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.