IDEAS home Printed from https://ideas.repec.org/p/zbw/sfb475/200545.html
   My bibliography  Save this paper

Empirical likelihood estimators for the error distribution in nonparametric regression models

Author

Listed:
  • Kiwitt, Sebastian
  • Nagel, Eva-Renate
  • Neumeyer, Natalie

Abstract

The aim of this paper is to show that existing estimators for the error distribution in nonparametric regression models can be improved when additional information about the distribution is included by the empirical likelihood method. The weak convergence of the resulting new estimator to a Gaussian process is shown and the performance is investigated by comparison of asymptotic mean squared errors and by means of a simulation study. As a by-product of our proofs we obtain stochastic expansions for smooth linear estimators based on residuals from the nonparametric regression model.

Suggested Citation

  • Kiwitt, Sebastian & Nagel, Eva-Renate & Neumeyer, Natalie, 2005. "Empirical likelihood estimators for the error distribution in nonparametric regression models," Technical Reports 2005,45, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
  • Handle: RePEc:zbw:sfb475:200545
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/22638/1/tr45-05.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Einmahl, J.H.J. & McKeague, I.W., 2002. "Empirical Likelihood based on Hypothesis Testing," Other publications TiSEM 402576fa-8c0e-45e2-a394-8, Tilburg University, School of Economics and Management.
    2. Michael G. Akritas & Ingrid Van Keilegom, 2001. "Non‐parametric Estimation of the Residual Distribution," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 28(3), pages 549-567, September.
    3. Yuichi Kitamura & Gautam Tripathi & Hyungtaik Ahn, 2004. "Empirical Likelihood-Based Inference in Conditional Moment Restriction Models," Econometrica, Econometric Society, vol. 72(6), pages 1667-1714, November.
    4. Holger Dette & Natalie Neumeyer & Ingrid Van Keilegom, 2007. "A new test for the parametric form of the variance function in non‐parametric regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(5), pages 903-917, November.
    5. Yuichi Kitamura, 2001. "Asymptotic Optimality of Empirical Likelihood for Testing Moment Restrictions," Econometrica, Econometric Society, vol. 69(6), pages 1661-1672, November.
    6. Antoine, Bertille & Bonnal, Helene & Renault, Eric, 2007. "On the efficient use of the informational content of estimating equations: Implied probabilities and Euclidean empirical likelihood," Journal of Econometrics, Elsevier, vol. 138(2), pages 461-487, June.
    7. Cheng, Fuxia, 2002. "Consistency of error density and distribution function estimators in nonparametric regression," Statistics & Probability Letters, Elsevier, vol. 59(3), pages 257-270, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Müller Ursula U. & Schick Anton & Wefelmeyer Wolfgang, 2007. "Estimating the error distribution function in semiparametric regression," Statistics & Risk Modeling, De Gruyter, vol. 25(1), pages 1-18, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Natalie Neumeyer, 2009. "Smooth Residual Bootstrap for Empirical Processes of Non‐parametric Regression Residuals," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(2), pages 204-228, June.
    2. Song Xi Chen & Jiti Gao, 2010. "Simultaneous Testing of Mean and Variance Structures in Nonlinear Time Series Models," School of Economics and Public Policy Working Papers 2010-28, University of Adelaide, School of Economics and Public Policy.
    3. Xu, Ke-Li, 2020. "Inference of local regression in the presence of nuisance parameters," Journal of Econometrics, Elsevier, vol. 218(2), pages 532-560.
    4. Prosper Dovonon, 2016. "Large Sample Properties of the Three-Step Euclidean Likelihood Estimators under Model Misspecification," Econometric Reviews, Taylor & Francis Journals, vol. 35(4), pages 465-514, April.
    5. Gu, Lijie & Wang, Suojin & Yang, Lijian, 2021. "Smooth simultaneous confidence band for the error distribution function in nonparametric regression," Computational Statistics & Data Analysis, Elsevier, vol. 155(C).
    6. Wenceslao González-Manteiga & Rosa Crujeiras, 2013. "An updated review of Goodness-of-Fit tests for regression models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(3), pages 361-411, September.
    7. Hansen, Lars Peter, 2013. "Uncertainty Outside and Inside Economic Models," Nobel Prize in Economics documents 2013-7, Nobel Prize Committee.
    8. Gospodinov, Nikolay & Otsu, Taisuke, 2012. "Local GMM estimation of time series models with conditional moment restrictions," Journal of Econometrics, Elsevier, vol. 170(2), pages 476-490.
    9. Giuseppe Ragusa, 2011. "Minimum Divergence, Generalized Empirical Likelihoods, and Higher Order Expansions," Econometric Reviews, Taylor & Francis Journals, vol. 30(4), pages 406-456, August.
    10. Otsu, Taisuke & Whang, Yoon-Jae, 2011. "Testing For Nonnested Conditional Moment Restrictions Via Conditional Empirical Likelihood," Econometric Theory, Cambridge University Press, vol. 27(1), pages 114-153, February.
    11. Holger Dette & Juan Carlos Pardo‐Fernández & Ingrid Van Keilegom, 2009. "Goodness‐of‐Fit Tests for Multiplicative Models with Dependent Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(4), pages 782-799, December.
    12. Einmahl, John H.J. & Van Keilegom, Ingrid, 2008. "Specification tests in nonparametric regression," Journal of Econometrics, Elsevier, vol. 143(1), pages 88-102, March.
    13. Feve, Frederique & Florens, Jean-Pierre & Van Keilegom, Ingrid, 2012. "Estimation of conditional ranks and tests of exogeneity in nonparametric nonseparable models," LIDAM Discussion Papers ISBA 2012036, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    14. Komunjer, Ivana & Ragusa, Giuseppe, 2016. "Existence And Characterization Of Conditional Density Projections," Econometric Theory, Cambridge University Press, vol. 32(4), pages 947-987, August.
    15. Ai, Chunrong & Chen, Xiaohong, 2012. "The semiparametric efficiency bound for models of sequential moment restrictions containing unknown functions," Journal of Econometrics, Elsevier, vol. 170(2), pages 442-457.
    16. Daniel Becker & Alois Kneip & Valentin Patilea, 2021. "Semiparametric inference for partially linear regressions with Box-Cox transformation," Papers 2106.10723, arXiv.org.
    17. Jun Zhang & Zhenghui Feng & Xiaoguang Wang, 2018. "A constructive hypothesis test for the single-index models with two groups," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(5), pages 1077-1114, October.
    18. Babii, Andrii & Florens, Jean-Pierre, 2017. "Are unobservables separable?," TSE Working Papers 17-802, Toulouse School of Economics (TSE).
    19. Lavergne, Pascal & Patilea, Valentin, 2013. "Smooth minimum distance estimation and testing with conditional estimating equations: Uniform in bandwidth theory," Journal of Econometrics, Elsevier, vol. 177(1), pages 47-59.
    20. Patrick Gagliardini & Diego Ronchetti, 2020. "Comparing Asset Pricing Models by the Conditional Hansen-Jagannathan Distance," Journal of Financial Econometrics, Oxford University Press, vol. 18(2), pages 333-394.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:sfb475:200545. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/isdorde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.