IDEAS home Printed from https://ideas.repec.org/p/zbw/sfb475/200139.html
   My bibliography  Save this paper

Log-periodogram estimation of the memory parameter of a long-memory process under trend

Author

Listed:
  • Sibbertsen, Philipp

Abstract

We show that small trends do not influence log-periodogram based estimators for the memory parameter in a stationary invertible long-memory process. In the case of slowly decaying trends which are easily confused with long-range dependence we show by Monte Carlo methods that the tapered periodogram is quite robust against these trends and thus provides a good alternative to standard logperiodogram methodology.

Suggested Citation

  • Sibbertsen, Philipp, 2001. "Log-periodogram estimation of the memory parameter of a long-memory process under trend," Technical Reports 2001,39, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
  • Handle: RePEc:zbw:sfb475:200139
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/77150/2/2001-39.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Philipp Sibbertsen, 2004. "Long memory versus structural breaks: An overview," Statistical Papers, Springer, vol. 45(4), pages 465-515, October.
    2. Clifford M. Hurvich & Bonnie K. Ray, 1995. "Estimation Of The Memory Parameter For Nonstationary Or Noninvertible Fractionally Integrated Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 16(1), pages 17-41, January.
    3. C. C. Heyde & W. Dai, 1996. "On The Robustness To Small Trends Of Estimation Based On The Smoothed Periodogram," Journal of Time Series Analysis, Wiley Blackwell, vol. 17(2), pages 141-150, March.
    4. Clifford M. Hurvich & Rohit Deo & Julia Brodsky, 1998. "The mean squared error of Geweke and Porter‐Hudak's estimator of the memory parameter of a long‐memory time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 19(1), pages 19-46, January.
    5. Velasco, Carlos, 1999. "Non-stationary log-periodogram regression," Journal of Econometrics, Elsevier, vol. 91(2), pages 325-371, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:ebl:ecbull:v:7:y:2003:i:3:p:1-13 is not listed on IDEAS
    2. Jussi Tolvi, 2003. "Long memory in a small stock market," Economics Bulletin, AccessEcon, vol. 7(3), pages 1-13.
    3. Surgailis, Donatas & Teyssière, Gilles & Vaiciulis, Marijus, 2008. "The increment ratio statistic," Journal of Multivariate Analysis, Elsevier, vol. 99(3), pages 510-541, March.
    4. Philipp Sibbertsen, 2004. "Long memory versus structural breaks: An overview," Statistical Papers, Springer, vol. 45(4), pages 465-515, October.
    5. Kang, Sang Hoon & Cheong, Chongcheul & Yoon, Seong-Min, 2010. "Long memory volatility in Chinese stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(7), pages 1425-1433.
    6. Philipp Sibbertsen, 2004. "Long memory in volatilities of German stock returns," Empirical Economics, Springer, vol. 29(3), pages 477-488, September.
    7. Sibbertsen, Philipp & Venetis, Ioannis, 2003. "Distinguishing between long-range dependence and deterministic trends," Technical Reports 2003,16, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    8. Canarella, Giorgio & Miller, Stephen M., 2017. "Inflation targeting and inflation persistence: New evidence from fractional integration and cointegration," Journal of Economics and Business, Elsevier, vol. 92(C), pages 45-62.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hassler, U. & Marmol, F. & Velasco, C., 2006. "Residual log-periodogram inference for long-run relationships," Journal of Econometrics, Elsevier, vol. 130(1), pages 165-207, January.
    2. Chang Sik Kim & Peter C.B. Phillips, 2006. "Log Periodogram Regression: The Nonstationary Case," Cowles Foundation Discussion Papers 1587, Cowles Foundation for Research in Economics, Yale University.
    3. Adam McCloskey, 2013. "Estimation of the long-memory stochastic volatility model parameters that is robust to level shifts and deterministic trends," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(3), pages 285-301, May.
    4. Giraitis, Liudas & Robinson, Peter M. & Samarov, Alexander, 2000. "Adaptive Semiparametric Estimation of the Memory Parameter," Journal of Multivariate Analysis, Elsevier, vol. 72(2), pages 183-207, February.
    5. Choi, Kyongwook & Zivot, Eric, 2007. "Long memory and structural changes in the forward discount: An empirical investigation," Journal of International Money and Finance, Elsevier, vol. 26(3), pages 342-363, April.
    6. Phillips, Peter C.B., 2007. "Unit root log periodogram regression," Journal of Econometrics, Elsevier, vol. 138(1), pages 104-124, May.
    7. Javier Haulde & Morten Ørregaard Nielsen, 2022. "Fractional integration and cointegration," CREATES Research Papers 2022-02, Department of Economics and Business Economics, Aarhus University.
    8. Ye, Xunyu & Gao, Ping & Li, Handong, 2015. "Improving estimation of the fractionally differencing parameter in the SARFIMA model using tapered periodogram," Economic Modelling, Elsevier, vol. 46(C), pages 167-179.
    9. Hurvich, Clifford M. & Moulines, Eric & Soulier, Philippe, 2002. "The FEXP estimator for potentially non-stationary linear time series," Stochastic Processes and their Applications, Elsevier, vol. 97(2), pages 307-340, February.
    10. Giorgio Canarella & Stephen M. Miller, 2016. "Inflation Targeting: New Evidence from Fractional Integration and Cointegration," Working papers 2016-08, University of Connecticut, Department of Economics.
    11. Guglielmo Maria Caporale & Luis A. Gil-Alana & Alex Plastun, 2017. "Long Memory and Data Frequency in Financial Markets," CESifo Working Paper Series 6396, CESifo.
    12. Caporale, Guglielmo Maria & Gil-Alana, Luis & Plastun, Alex, 2018. "Is market fear persistent? A long-memory analysis," Finance Research Letters, Elsevier, vol. 27(C), pages 140-147.
    13. Arteche, J., 2006. "Semiparametric estimation in perturbed long memory series," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2118-2141, December.
    14. Javier Hualde & Morten Ørregaard Nielsen, 2022. "Truncated sum-of-squares estimation of fractional time series models with generalized power law trend," CREATES Research Papers 2022-07, Department of Economics and Business Economics, Aarhus University.
    15. Mccloskey, Adam & Perron, Pierre, 2013. "Memory Parameter Estimation In The Presence Of Level Shifts And Deterministic Trends," Econometric Theory, Cambridge University Press, vol. 29(6), pages 1196-1237, December.
    16. Liudas Giraitis & Peter M Robinson, 2002. "Edgeworth Expansions for Semiparametric Whittle Estimation of Long Memory," STICERD - Econometrics Paper Series 438, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    17. Giraitis, L. & Robinson, P.M., 2003. "Edgeworth expansions for semiparametric Whittle estimation of long memory," LSE Research Online Documents on Economics 291, London School of Economics and Political Science, LSE Library.
    18. Guglielmo Caporale & Luis Gil-Alana, 2013. "Long memory in US real output per capita," Empirical Economics, Springer, vol. 44(2), pages 591-611, April.
    19. de Truchis, Gilles, 2013. "Approximate Whittle analysis of fractional cointegration and the stock market synchronization issue," Economic Modelling, Elsevier, vol. 34(C), pages 98-105.
    20. Ana Pérez & Esther Ruiz, 2002. "Modelos de memoria larga para series económicas y financieras," Investigaciones Economicas, Fundación SEPI, vol. 26(3), pages 395-445, September.

    More about this item

    Keywords

    Long-memory; trends; log-periodogram regression;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:sfb475:200139. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/isdorde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.