IDEAS home Printed from https://ideas.repec.org/p/zbw/iwhdps/152021.html
   My bibliography  Save this paper

Economic sentiment: Disentangling private information from public knowledge

Author

Listed:
  • Heinisch, Katja
  • Lindner, Axel

Abstract

This paper addresses a general problem with the use of surveys as source of information about the state of an economy: Answers to surveys are highly dependent on information that is publicly available, while only additional information that is not already publicly known has the potential to improve a professional forecast. We propose a simple procedure to disentangle the private information of agents from knowledge that is already publicly known for surveys that ask for general as well as for private prospects. Our results reveal the potential of our proposed technique for the usage of European Commissions' consumer surveys for economic forecasting for Germany.

Suggested Citation

  • Heinisch, Katja & Lindner, Axel, 2021. "Economic sentiment: Disentangling private information from public knowledge," IWH Discussion Papers 15/2021, Halle Institute for Economic Research (IWH).
  • Handle: RePEc:zbw:iwhdps:152021
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/248452/1/1782421033.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Roberto Golinelli & Giuseppe Parigi, 2004. "Consumer Sentiment and Economic Activity: A Cross Country Comparison," Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2004(2), pages 147-170.
    2. Morris, Stephen & Shin, Hyun Song, 1998. "Unique Equilibrium in a Model of Self-Fulfilling Currency Attacks," American Economic Review, American Economic Association, vol. 88(3), pages 587-597, June.
    3. Ciaran Driver & Giovanni Urga, 2004. "Transforming Qualitative Survey Data: Performance Comparisons for the UK," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 66(1), pages 71-89, February.
    4. Dovern, Jonas, 2015. "A multivariate analysis of forecast disagreement: Confronting models of disagreement with survey data," European Economic Review, Elsevier, vol. 80(C), pages 16-35.
    5. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    6. Christopher Roth & Johannes Wohlfart, 2020. "How Do Expectations about the Macroeconomy Affect Personal Expectations and Behavior?," The Review of Economics and Statistics, MIT Press, vol. 102(4), pages 731-748, October.
    7. Sarah Gelper & Christophe Croux, 2010. "On the Construction of the European Economic Sentiment Indicator," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 72(1), pages 47-62, February.
    8. Robert B. Barsky & Eric R. Sims, 2012. "Information, Animal Spirits, and the Meaning of Innovations in Consumer Confidence," American Economic Review, American Economic Association, vol. 102(4), pages 1343-1377, June.
    9. Trueman, Brett, 1994. "Analyst Forecasts and Herding Behavior," The Review of Financial Studies, Society for Financial Studies, vol. 7(1), pages 97-124.
    10. Axel Lindner, 2006. "Does Transparency of Central Banks Produce Multiple Equilibria on Currency Markets?," Scandinavian Journal of Economics, Wiley Blackwell, vol. 108(1), pages 1-14, March.
    11. Lahiri, Kajal & Sheng, Xuguang, 2008. "Evolution of forecast disagreement in a Bayesian learning model," Journal of Econometrics, Elsevier, vol. 144(2), pages 325-340, June.
    12. Annabelle Mourougane & Moreno Roma, 2003. "Can confidence indicators be useful to predict short term real GDP growth?," Applied Economics Letters, Taylor & Francis Journals, vol. 10(8), pages 519-522.
    13. Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lindner, Axel & Heinisch, Katja, 2019. "Economic Sentiment in Europe: Disentangling Private Information from Public Knowledge," VfS Annual Conference 2019 (Leipzig): 30 Years after the Fall of the Berlin Wall - Democracy and Market Economy 203501, Verein für Socialpolitik / German Economic Association.
    2. Magnus Reif, 2020. "Macroeconomics, Nonlinearities, and the Business Cycle," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 87.
    3. Isabel Figuerola‐Ferretti & Alejandro Rodríguez & Eduardo Schwartz, 2021. "Oil price analysts' forecasts," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(9), pages 1351-1374, September.
    4. Siklos, Pierre, 2017. "What Has Publishing Inflation Forecasts Accomplished? Central Banks And Their Competitors," LCERPA Working Papers 0098, Laurier Centre for Economic Research and Policy Analysis, revised 01 Apr 2017.
    5. Constantin Burgi, 2016. "What Do We Lose When We Average Expectations?," Working Papers 2016-013, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
    6. Czudaj, Robert L., 2022. "Heterogeneity of beliefs and information rigidity in the crude oil market: Evidence from survey data," European Economic Review, Elsevier, vol. 143(C).
    7. Kajal Lahiri & George Monokroussos & Yongchen Zhao, 2016. "Forecasting Consumption: the Role of Consumer Confidence in Real Time with many Predictors," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(7), pages 1254-1275, November.
    8. Raffaele Mattera & Michelangelo Misuraca & Maria Spano & Germana Scepi, 2023. "Mixed frequency composite indicators for measuring public sentiment in the EU," Quality & Quantity: International Journal of Methodology, Springer, vol. 57(3), pages 2357-2382, June.
    9. Rakovská, Zuzana, 2021. "Composite survey sentiment as a predictor of future market returns: Evidence for German equity indices," International Review of Economics & Finance, Elsevier, vol. 73(C), pages 473-495.
    10. Mariana Hatmanu & Cristina Cautisanu & Mihaela Ifrim, 2020. "The Impact of Interest Rate, Exchange Rate and European Business Climate on Economic Growth in Romania: An ARDL Approach with Structural Breaks," Sustainability, MDPI, vol. 12(7), pages 1-23, April.
    11. Giuseppe Parigi & Roberto Golinelli, 2007. "The use of monthly indicators to forecast quarterly GDP in the short run: an application to the G7 countries," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(2), pages 77-94.
    12. Trapani, Lorenzo & Urga, Giovanni, 2009. "Optimal forecasting with heterogeneous panels: A Monte Carlo study," International Journal of Forecasting, Elsevier, vol. 25(3), pages 567-586, July.
    13. Hector H. Sandoval & Anita N. Walsh, 2021. "The role of consumer confidence in forecasting consumption, evidence from Florida," Southern Economic Journal, John Wiley & Sons, vol. 88(2), pages 757-788, October.
    14. Olivier Biau & Hélène Erkel-Rousse & Nicolas Ferrari, 2006. "Réponses individuelles aux enquêtes de conjoncture et prévision de la production manufacturière," Économie et Statistique, Programme National Persée, vol. 395(1), pages 91-116.
    15. Mouratidis, Kostas, 2008. "Evaluating currency crises: A Bayesian Markov switching approach," Journal of Macroeconomics, Elsevier, vol. 30(4), pages 1688-1711, December.
    16. Claveria, Oscar & Monte, Enric & Torra, Salvador, 2020. "Economic forecasting with evolved confidence indicators," Economic Modelling, Elsevier, vol. 93(C), pages 576-585.
    17. Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian, 2020. "Forecasting realized oil-price volatility: The role of financial stress and asymmetric loss," Journal of International Money and Finance, Elsevier, vol. 104(C).
    18. Dal Bianco, Marcos & Camacho, Maximo & Perez Quiros, Gabriel, 2012. "Short-run forecasting of the euro-dollar exchange rate with economic fundamentals," Journal of International Money and Finance, Elsevier, vol. 31(2), pages 377-396.
    19. Máximo Camacho & Rafael Doménech, 2012. "MICA-BBVA: a factor model of economic and financial indicators for short-term GDP forecasting," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 3(4), pages 475-497, December.
    20. Goodness C. Aye & Stephen M. Miller & Rangan Gupta & Mehmet Balcilar, 2016. "Forecasting US real private residential fixed investment using a large number of predictors," Empirical Economics, Springer, vol. 51(4), pages 1557-1580, December.

    More about this item

    Keywords

    consumer confidence; private information; public information; survey data;
    All these keywords.

    JEL classification:

    • C83 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Survey Methods; Sampling Methods
    • D12 - Microeconomics - - Household Behavior - - - Consumer Economics: Empirical Analysis
    • D82 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Asymmetric and Private Information; Mechanism Design
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:iwhdps:152021. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/iwhhhde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.